
FinRL-Podracer: High Performance and Scalable Deep
Reinforcement Learning forQuantitative Finance
Zechu Li

zl2993@columbia.edu
Columbia University

Xiao-Yang Liu∗
xl2427@columbia.edu
Columbia University

Jiahao Zheng
jh.zheng@siat.ac.cn

Shenzhen Inst. of Advanced Tech.

Zhaoran Wang
zhaoranwang@gmail.com
Northwestern University

Anwar Walid†
anwar.i.walid@gmail.com

Amazon & Columbia University

Jian Guo‡
guojian@idea.edu.cn

IDEA Research

ABSTRACT
Machine learning techniques are playing more and more important
roles in finance market investment. However, finance quantitative
modeling with traditional supervised learning frameworks has a
number of limitations, including the difficulty in defining appropri-
ate labels, lack of consistency in modeling and trading execution,
and lack of modeling the dynamic nature of the finance market.
The development of reinforcement learning techniques is partially
addressing these issues. Unfortunately, the steep learning curve
and the difficulty in quick modeling and agile development are
impeding finance researchers from using reinforcement learning in
quantitative trading. In this paper, we propose an RLOps in finance
paradigm and present a FinRL-Podracer framework to accelerate the
development pipeline of deep reinforcement learning (DRL)-driven
trading strategy and to improve both trading performance and train-
ing efficiency. FinRL-Podracer is a cloud-native microservices-based
solution that features high performance and high scalability and
promises continuous training, continuous integration, and continuous
delivery of DRL-driven trading strategies, facilitating a rapid trans-
formation from algorithmic innovations into a profitable trading
strategy. First, we propose a generational evolution mechanism
(namely, a cloud-native orchestration mechanism) to improve the
trading performance of an DRL agent, and schedule the training of a
DRL algorithm onto a GPU cloud via multi-level mapping. Then, we
carry out the training of DRL components with high-performance
optimizations on GPUs. Finally, we evaluate the FinRL-Podracer
framework for a stock trend prediction task on an NVIDIA DGX
SuperPOD cloud. FinRL-Podracer outperforms three popular DRL
libraries Ray RLlib, Stable Baseline 3 and FinRL, i.e., 12% ∼ 35%
improvements in annual return, 0.1 ∼ 0.6 improvements in Sharpe
ratio and 3× ∼ 7× speed-up in training time. We show the high
scalability by training a trading agent in 10 minutes on an NVIDIA
∗Equal contribution.
†A. Walid finished this project at Bell labs, before joining Amazon.
‡Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
New York ’21, Nov. 3–5, 2021, New York, NY
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-7584-9/20/10. . . $15.00
https://doi.org/10.1145/3490354.3494415

DGX SuperPOD cloud with 80 A100 GPUs, for a stock trend pre-
diction task on NASDAQ-100 constituent stocks with minute-level
data over 10 years.

CCS CONCEPTS
•Computingmethodologies→Machine learning;Neural net-
works;Markov decision processes; Reinforcement learning;
Explainability; Value iteration.

KEYWORDS
RLOps in finance, deep reinforcement learning, stock trend predic-
tion, scalability, GPU cloud

ACM Reference Format:
Zechu Li, Xiao-Yang Liu, Jiahao Zheng, Zhaoran Wang, Anwar Walid,
and Jian Guo. 2021. FinRL-Podracer: High Performance and Scalable Deep
Reinforcement Learning for Quantitative Finance. InACM International Con-
ference on AI in Finance (ICAIF ’21), October 15–16, 2020, New York, NY, USA.
ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3490354.3494415

1 INTRODUCTION
Algorithmic trading is increasingly deployed in the financial in-
vestment process. A conventional supervised learning pipeline
consists of five stages [30, 39], as shown in Fig. 1 (left), namely
data pre-process, modeling and trading signal generation, portfolio
optimization, trade execution, and post-trade analysis. Recently,
deep reinforcement learning (DRL) [33, 35, 36] has been recognized
as a promising alternative for quantitative finance [2, 6, 15, 16],
since it has the potential to overcome some important limitations
of supervised learning, such as the difficulty in label specification
and the gap between modeling, positioning and order execution.
We advocate extending the principle of MLOps [1] 1 to the RLOps
in finance paradigm that implements and automates the continuous
training (CT), continuous integration (CI), and continuous delivery
(CD) for trading strategies. We argue that such a paradigm has vast
profits potential from a broadened horizon and fast speed, which is
critical for wider DRL adoption in real-world trading tasks.

The RLOps in finance paradigm, as shown in Fig. 1 (right), inte-
grates middle stages (i.e., modeling and trading signal generation,
portfolio optimization, and trade execution) into a DRL agent. Such
a paradigm aims to help quantitative traders develop an end-to-end
trading strategy with a high degree of automation, which removes

1MLOps is an ML engineering culture and practice that aims at unifying ML system
development (Dev) and ML system operation (Ops).

https://doi.org/10.1145/3490354.3494415
https://doi.org/10.1145/3490354.3494415

New York ’21, Nov. 3–5, 2021, New York, NY Zechu Li, Xiao-Yang Liu, Jiahao Zheng, Zhaoran Wang, Anwar Walid, and Jian Guo

Figure 1: Software stack for an algorithmic trading process:
conventional approach vs. RLOps in finance.

the latency between stages and results in a compact software stack.
The major benefit is that it can explore the vast potential profits be-
hind the large-scale financial data, exceeding the capacity of human
traders; thus, the trading horizon is lifted up to a new level. Also,
it allows traders to continuously update trading strategies, which
equips traders with an edge in a highly volatile market. However,
the large-scale financial data and fast iteration of trading strategy
bring imperative challenges in terms of computing power.

Existing works are not satisfactory with respect to the usage of
large-scale financial data and the efficiency of agent training. For
DRL strategy design, existing works studied algorithmic trading
on a daily time-frame [2, 24, 26, 41–44] or hourly time-frame [13],
which is hard to fully explore the dynamics of a highly volatile mar-
ket. For DRL library/package development, existing works may not
be able to meet the intensive computing requirement of relatively
high frequency trading tasks, large-scale financial data processing
and tick-level trade execution. We evaluate the training time of
three popular DRL libraries FinRL [24, 26], RLlib [19] and Stable
Baseline3 [8] on NASDAQ-100 constituent stocks with minute-level
data. Table 1 shows that it is difficult for them to effectively train a
profitable trading agent in a short cycle time.

In recent years, scalable DRL frameworks and device-accelerated
simulations have been recognized as the critical software develop-
ment for the RLOps paradigm [11, 19, 20]. It is promising to utilize
extensive computing resources, e.g., a GPU cloud, to accelerate
the development pipeline of trading strategies. Therefore, we in-
vestigate DRL solutions on a GPU cloud, e.g., an NVIDIA DGX
SuperPOD cloud [37] that is the most powerful AI infrastructure
for enterprise deployments.

In this paper, we propose a FinRL-Podracer framework as a high-
performance and scalable solution for RLOps in finance. At a high
level, FinRL-Podracer schedules the training process through a
multi-level mapping and employs a generational evolution mecha-
nism. Such a design guarantees scalability on a cloud platform. At a
low level, FinRL-Podracer realizes hardware-oriented optimizations,
including parallelism encapsulation, GPU acceleration, and storage
optimization, thus achieving high-performance. As a result, FinRL-
Podracer can effectively exploit the super computing resources of
a GPU cloud for relatively high frequency trading, which provides
an opportunity to automatically design DRL trading strategies with
fast and flexible development, deployment and production.

Our contributions can be summarized as follows

Sharpe ratio Max dropdown Training time
RLlib [19] 1.67 -23.248% 110 min
SB3 [12] 1.82 -23.750% 150 min
FinRL [43] 1.35 -27.267% 345 min
QQQ 1.25 -28.559% –

Table 1: Evaluations of existing DRL libraries on an NVIDIA
DGX A100 server [4]. We evaluate on NASDAQ-100 con-
stituent stocks with minute-level data by training from
01/01/2009 to 05/12/2019 and backtesting from 05/13/2019 to
05/26/2021. Invesco QQQ ETF is a market benchmark.

• We propose a FinRL-Podracer framework built on two previ-
ous projects, FinRL [24, 26] and ElegantRL [23] 2, to initiate
a paradigm shift from conventional supervised approaches
to RLOps in finance.

• FinRL-Podracer employs a generational evolution mecha-
nism during the training of DRL agents and provides high-
performance optimizations for financial tasks.

• We show the high scalability by training a trading agent in
10 minutes on an NVIDIA DGX SuperPOD cloud [37] with
80A100 GPUs, for a stock trend prediction task on NASDAQ-
100 constituent stocks with minute-level data over 10 years.
We evaluate the trained agent for one year and show its
trading performance outperforms three DRL libraries FinRL
[24, 26], Ray RLlib [19] and Stable Baseline3 [12], i.e., 12% ∼
35% improvements in annual return, 0.1 ∼ 0.6 improvements
in Sharpe ratio and 3× ∼ 7× speed-up in training time.

The remainder of this paper is organized as follows. Section 2
describes related works. Section 3 models a typical stock trend pre-
diction task as a Markov Decision Process. In Section 4, we present
the FinRL-Podracer framework and describe its evolution and train-
ing layers, respectively. In Section 5, we describe the experimental
setup for the trading task and present experimental results. We
conclude this paper in Section 6.

2 RELATEDWORKS
This section summarizes related works from two aspects: DRL
application in quantitative finance and the MLOps development.

2.1 DRL in Finance
With the the successes of DRL in playing games, e.g., Atari games
[29] and GO games [34], more and more finance researchers show
their interests in this area, and they have done some early attempts
to applying DRL in quantitative finance investment. In this paper,
we take the stock trend prediction (STP) problem as an example
to introduce existing works and show great potentials of DRL in
finance area.

Stock trend prediction task is often considered a challenging
application of machine learning in finance due to its noisy and
volatile nature. Traditionally, the STP problem is formulated as a
supervised learning problem, where features of stocks are extracted
from a past time window of technical indices, fundamental data
and alternative data, and labels are usually extracted from a future

2ElegantRL is a scalable and elastic deep reinforcement learning library. It supports
general robotic and game playing applications.

FinRL-Podracer: High Performance and Scalable Deep Reinforcement Learning for Quantitative Finance New York ’21, Nov. 3–5, 2021, New York, NY

time window of concerned criteria such as rise/fall, returns, excess
returns or Sharpe ratios. Recently, deep reinforcement learning has
been applied to solving STP problems. Zhang et al. [44] constructed
a trading agent using three DRL algorithms, DQN, PG, and A2C,
for both discrete and continuous action spaces. Yang et al. [43] used
an ensemble strategy to integrate different DRL algorithms, A2C,
DDPG, and PPO based on the Sharpe ratio. They applied the idea
of a rolling window, and the best algorithm is picked to trade in the
following period. Recently, many researchers provide more DRL
solutions for STP problems [3, 7, 18]. However, most existing works
are based on several assumptions, which limits the practicality.
For example, the backtesting has no impacts on the market; there
are almost no other complex actions besides buying, holding, and
selling; only one stock type is supported for each agent.

2.2 Principle of MLOps
Recently, Google trends put Machine Learning Operations (MLOps)
as one of the most promisingly increasing trends [40]. MLOps is a
practice in developing and operating large-scale machine learning
systems, which facilitates the transformation of machine learning
models from development to production [5, 27]. In essence, MLOps
entails cloud computing power to integrate and automate a stan-
dard machine learning pipeline: (1) data transportation; (2) data
transformation; (3) continuous ML training; (4) continuous ML de-
ployment; (5) output production, thus building applications that
enables developers with limited machine-learning expertise to train
high-quality models specific to their domain or data [22, 38].

However, the training data of DRL is not prepared in advance
compared with conventional supervised learning but collected
through an agent-environment interaction inside the training pro-
cess. Such a significant difference requires a re-integration of the
automated pipeline and a re-scheduling of the cloud computing
resources with respect to the conventional MLOps principle. There-
fore, we advocate extending the principle of MLOps to the RLOps
in the finance paradigm to seek an opportunity for the wider DRL
adoption in production-class financial services.

3 STOCK TREND PREDICTION TASK
We describe the problem formulation of a typical financial task,
stock trend prediction, which locates at the task layer of Fig. 2. Our
setup follows a similar setting in [26][43].

A stock trend prediction task is modeled as a Markov Decision
Process (MDP): given state 𝑠𝑡 ∈ S at time 𝑡 , an agent takes an
action 𝑎𝑡 ∈ A according to policy 𝜋𝜃 (𝑠𝑡), transitions to the next
state 𝑠𝑡+1 and receives an immediate reward 𝑟 (𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1) ∈ R. The
policy 𝜋𝜃 (𝑠) with parameter 𝜃 is a function that maps a state to
an action vector over 𝑛 stocks. The objective is to find an optimal
policy 𝜋∗

𝜃
(parameterized by 𝜃) that maximizes the expected return

(the fitness score in Fig. 2) over 𝑇 times slots

𝜋∗
𝜃
= argmax

𝜃

𝐽 (𝜋𝜃), where 𝐽 (𝜋𝜃) = E
[
𝑇∑
𝑡=0

𝛾𝑡𝑟 (𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1)
]
, (1)

where 𝛾 ∈ (0, 1] is a discount factor.
Then, for the stock trend predictiont task with 𝑛 stocks, we spec-

ify the state space S, action spaceA, reward function 𝑟 (𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1),
and the state transition, as in [26][43].

State space S describes an agent’s perception of a market envi-
ronment. We summarize various features that are used by human
trader and use them to construct the state space:
• Balance 𝑏𝑡 ∈ R+: the money left in the account at time 𝑡 .
• Shares h𝑡 ∈ Z𝑛+: the number of shares for 𝑛 stocks at 𝑡 .
• Closing price p𝑡 ∈ R𝑛+: the closing prices of 𝑛 stocks at 𝑡 .
• Technical indicators help the agent make decisions. Users can
select existing indicators or add new indicators. E.g., Moving
Average Convergence Divergence (MACD) M𝑡 ∈ R𝑛 , Relative
Strength Index (RSI) R𝑡 ∈ R𝑛+, Commodity Channel Index (CCI)
C𝑡 ∈ R𝑛+, etc.
Action spaceA describes the allowed actions an agent can take

at states 𝑠𝑡 , 𝑡 = 1, ...,𝑇 . For one stock, action is𝑎 ∈ {−𝑘, ...,−1, 0, 1, ..., 𝑘},
where 𝑘 ∈ Z or −𝑘 ∈ Z denotes the number of shares to buy or sell,
respectively, and 𝑎 = 0 means to hold. Users can set a maximum
number of shares ℎmax for a transaction, i.e., 𝑘 ≤ ℎmax, or set a
maximum ratio of capital to allocate on each stock.

Reward 𝑟𝑡 for taking action 𝑎𝑡 at state 𝑠𝑡 and arriving at state
𝑠𝑡+1. Reward is the incentive for an agent to improve its policy for
the sake of getting higher rewards. A relatively simple reward can
be defined as the change of the account value, i.e.,

𝑟𝑡 = (𝑏𝑡+1 + p𝑇𝑡+1h𝑡+1) − (𝑏𝑡 + p𝑇𝑡 h𝑡) − 𝑐𝑡 , (2)

where the first and second terms are the account values at 𝑠𝑡+1 and
𝑠𝑡 , and 𝑐𝑡 denotes the transaction cost (market friction).

Transition (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1). Taking action 𝑎𝑡 at state 𝑠𝑡 , the en-
vironment steps forward and arrives at state 𝑠𝑡+1. A transition
involves the change of balance, number of shares, and the stock
prices due to the market changes. We split the stocks into three
sets: selling set 𝑆 , buying set 𝐵 and holding set 𝐻 , respectively. The
new balance is

𝑏𝑡+1 = 𝑏𝑡 + (p𝑆𝑡)𝑇k𝑆𝑡 − (p𝐵𝑡)𝑇k𝐵𝑡 , (3)

where p𝑆 ∈ R𝑛 and k𝑆 ∈ R𝑛 are the vectors of prices and number
of selling shares for the selling stocks, and p𝐵 and k𝐵 for the buying
stocks. The number of shares becomes

h𝑡+1 = h𝑡 − k𝑆𝑡 + k𝐵𝑡 ≥ 0. (4)

The super computing power is necessary to achieve the mas-
sively parallel simulations for an STP task. In the STP task, a DRL
agent keeps observing and trading on the historical market data to
sample trajectories (one trajectory is a series of transitions). How-
ever, the historical data has to be significantly large in order to
provide a broad horizon. For example, the variety of the historical
data is related with the data volume and data type:
• The data volume varies with respect to:
– the length of data period: spans from one year up to more
than ten years.

– the time granularity: from daily-level tominute-level, second-
level or even microsecond-level.

– the number of stocks: from thirty (Dow 30) to hundreds
(NASDAQ 100 or S&P 500), or even covers the whole market.

• The data type varies with respect to:
– the raw market data includes data points of open-high-low-
close-volume (OHLCV) for each stock, which provides a direct
understanding of each stock performance.

New York ’21, Nov. 3–5, 2021, New York, NY Zechu Li, Xiao-Yang Liu, Jiahao Zheng, Zhaoran Wang, Anwar Walid, and Jian Guo

Figure 2: Overview of FinRL-Podracer that has three layers: trading task layer, evolution layer and training layer.

– the alternative data usually refers to the large-scale collec-
tion of both structured and unstructured data, e.g., market
news, academic graph data, credit card transactions and GPS
traffic. The agent could employ different encoders to analyze
the insights of investment techniques provided by the alterna-
tive data.

– the indexes could be directly given as a kind of powerful
technical indicator, which helps the agent make decisions.

In practice, the environment simulation, alternative data process-
ing and index analyzing are computational expensive, therefore, a
cloud-level solution is critical to a fast iteration of a trading strategy.

4 FINRL-PODRACER FRAMEWORK
We propose a FinRL-Podracer framework to utilize the super com-
puting power of a GPU cloud for training DRL agents. We first
present an overview of FinRL-Podracer and then describe its lay-
ered architecture.

4.1 Overview
Based on the experiments in Table 1, we found that existing DRL li-
braries/packages [12, 19, 24, 26] have three major issues that restrict
the trading performance and training efficiency:

• There is no criteria to determine overfitting or underfitting
of models (agents) during the training process. It is critical to
overcome underfitting with more computing power and avoid
overfitting that wastes computing power, while both cases would
lead to suboptimal models.

• The training process of an agent is sensitive to hyperparame-
ters, which may result in unstable trading performance in back-
testing. However, it is tedious for human traders to search for a

good combination of hyperparameters, and thus an automatic
hyperparamter search is favored.

• Computing power is critical to effectively explore and exploit
large-scale financial data. Sufficient exploration guarantees a
good trading performance, and then smart exploitation results
in good training efficiency. A strong computing power helps
achieve a balance between exploration and exploitation.

Therefore, we provide a high-performance and scalable solution
on a GPU cloud, FinRL-Podracer, to develop a profitable DRL-driven
trading strategy within a small time window. To fully utilize a
GPU cloud, say an NVIDIA DGX SuperPod cloud [37], we organize
FinRL-Podracer into a three-layer architecture in Fig. 2, a trading
task layer on the top, an evolution layer in the middle and a training
layer at the bottom.

In the evolution layer, we employ a generational evolution mech-
anism and address the issues of overfitting and hyper-parameter
sensitivity through a synergy of an evaluator and a selector. The
evaluator computes the fitness scores 𝐽 (𝜋𝜃) in (1) of a population
of 𝑁 agents and mitigates the performance collapse caused by over-
fitting. The hyper-parameter search is automatically performed via
agent evolution, where the selector uses the fitness scores to guide
the search direction. An effective cloud-level evolution requires
a high-quality and scalable scheduling, therefore we schedule a
population of parallel agents through a multi-level mapping and
an efficient communication protocol.

In the training layer, we realize high-performance GPU-oriented
optimizations of a decomposable DRL training pipelinewith a lower-
level parallelism. We locally optimize each component, namely en-
vironment, worker, replay buffer, and learner, through GPU acceler-
ation, efficient parameter communication, and storage optimization.

FinRL-Podracer: High Performance and Scalable Deep Reinforcement Learning for Quantitative Finance New York ’21, Nov. 3–5, 2021, New York, NY

Thus, we maximize the hardware usage and minimize the commu-
nication overhead, which allows each isolated component to be
executed on a GPU cloud.

Such an evolution-and-trainingworkflow on aGPU cloud pipelines
the development of a strategy. It enjoys great scalability and high
performance, which promotes fast and flexible development, de-
ployment and production of profitable DRL trading strategies.

4.2 Scalable Evolution Layer
FinRL-Podracer exploits agent-parallelism to fully utilize the cloud
computing resources. We propose a generational evolution mecha-
nism to coordinate the parallel agents and to automatically search
the best hyper-parameters. At present, we utilize an evaluator and
a selector to schedule the agent evolution, where more modules can
be incorporated, e.g., a monitor, an allocator, etc.

The evaluator evaluates each agent in the course of the training
and keeps track of the best agent, which can effectively mitigate
the overfitting issue. From our observation, it is difficult for users
to use existing libraries [19][12][43] to train a profitable trading
strategy because the overfitting agent may be treated as the best
agent when the training process moves forward. When the dataset
scales up, we need to increase the training time/steps to fully ex-
plore the large-scale data, making it harder to set an appropriate
stop criteria, and the result agent may hardly be the best one. The
evaluator effectively solves the problem: it evaluates the agent at
each iteration, outputs a fitness score and records the best agent so
far; when the fitness score in (1) drops, the evaluator would stop
the training process and output the best agent as the final agent.

The selector acts as a central controller to perform a generational
evolution in a genetic algorithm (GA) [28]. GA is an optimization
algorithm inspired by natural evolution: at every generation, a pop-
ulation of offsprings is perturbed, and the evaluator calculates their
fitness scores in (1) based on an objective function; then the se-
lector recombines the offspring with the highest scores to form
a new population for the next generation. Since the offspring is
replicable, the concept of natural selection scales up well on a GPU
cloud. As depicted in the evolution layer of Fig. 2, multiple agents
with different hyper-parameter combinations are grouped into a
population where each agent is an offspring. The synergy of the
evaluator and selector enables FinRL-Podracer to naturally select
the best agent for the future generation and eliminates the potential
negative impact from poorly evolved agents, which effectively im-
proves the stability and efficiency of the training. The experiment
results in Section 5 will investigate the improvement brought by
the generational evolution mechanism.

4.3 Packaging Worker-Learner into Pod
FinRL-Podracer achieves effective and efficient allocation of cloud
resources through a multi-level mapping, which follows the prin-
ciple of decomposition-and-encapsulation. We employ a worker-
learner decomposition [9–11] that splits a DRL training process
into four isolated components with encapsulated parallelism:

• Environment: simulates a financial market.
• Rollout worker: interacts with an environment.
• Replay buffer: stores transitions from a worker and feeds
a batch of transitions to a learner.

Figure 3: Two implementations of a training process: a) the
environment simulation (green), action inference (yellow),
and model update (red) are all located on GPUs. b) the envi-
ronment simulation is executed on CPUs, and action infer-
ence andmodel update are on GPUs. An NVIDIA DGX-A100
server [37][4] contains 8 A100 GPUs.

• Learner: trains the neural networks.

Each agent contains the four types of components, which are
packaged into a suite that is mapped into a GPU pod. We use
multiprocessing to run those components as separate processes,
and each process is mapped to a GPU container. Such a two-level
mapping is natural since a GPU pod consists of multiple containers,
while correspondingly a DRL training process of an agent consists
of different components.

This pod-container structure enables scalable allocation of GPU
computing resources. We take advantage of a GPU cloud software
stack and use the Kubernetes (K8S) software to scalably coordinate
pods among severs. Consider a cloud with 10 servers (i.e., 80 A100
GPUs), we encapsulate an agent (a package of components) into a
pod, replicate it 10 times, and send them to a K8S server. Then, K8S
distributes these 10 pod replicas to computing nodes that execute
the training. The pod replication reflects the agent-parallelism, and
it is highly scalable since a GPU cloud can support a large number
of pods.

We propose an efficient protocol to guide the agent-to-agent com-
munication to better support the agent evolution on a GPU cloud.
Such a protocol aims to minimize the communication overhead as
the number of agents scales up. The communication protocol in the
evolution layer of Fig. 2 utilizes a parameter server (PS) architecture
[17] and a mesh architecture as two steps. Take a population of
16 agents (due to the one-to-one mapping, 16 pods in total) as an
example; in the first step, we redistribute 16 pods as 4 groups and
select 1 pod from each group as the main pod that acts as a server
to communicate with the remaining pods. In the second step, the 4
main pods communicate in pairs for 2 rounds. This communication
protocol is scalable and efficient for a large number of agents: 1)
such a protocol can flexibly adapt to an arbitrary number of agents,

New York ’21, Nov. 3–5, 2021, New York, NY Zechu Li, Xiao-Yang Liu, Jiahao Zheng, Zhaoran Wang, Anwar Walid, and Jian Guo

with a change of configuration setting; 2) the protocol is decen-
tralized, which effectively avoids the network bottleneck when the
number of agents increases.

4.4 High Performance Training Layer
The optimization of each component is critical to the overall perfor-
mance. We describe the hardware-oriented optimizations of each
component, including parallelism encapsulation, GPU acceleration,
and storage optimization.

Environment with GPU-acceleration. The environment sim-
ulation is both computing- and communication-intensive. We pro-
pose a batch mode to achieve massively parallel simulations, which
maximizes the hardware utilization (either CPUs or GPUs). We
instantiate multiple independent sub-environments in a batched
environment, and a batched environment is exposed to a rollout
worker that takes a batch of actions and returns a batch of transi-
tions.

Fig. 3 a) presents a GPU-accelerated environment. Environments
of financial tasks are highly suitable to GPUs because financial
simulations involve "simple" arithmetics, where a GPU with thou-
sands of cores has the natural advantages of matrix computations
and parallelism. Then, financial environments written in CUDA
can speed up the simulation. The GPU-accelerated environment
also effectively reduces the communication overhead by bypassing
CPUs, as supported by a GPU cloud [37]. The output transitions
would be represented as a tensor already stored in GPU memory,
which can be directly fetched by rollout workers, avoiding the data
transfer between CPU and GPU back and forth.

Fig. 3 b) presents an environment on CPUs. There are some
financial simulations with frequent CPU usage (addressing trading
constraints), making it inefficient to compute on GPUs. In our
experiments, some environments run much slower on GPUs than
CPUs. Thus, we simulate those environments on CPUs.

Replay buffer on GPU. We allocate the replay buffer on the
contiguous memory of GPUs, which increases the addressing speed
and bypasses CPUs for faster data transfer. As the worker and
learner are co-located on GPUs, we store all transitions as tensors
on the contiguous memory of GPUs. Since the collected transitions
are packed together, the addressing speed increases dramatically
well when a learner randomly samples a batch of transitions to
update network parameters.

Learner with optimizations. Inside a training process of an
agent, we concurrently run multiple learners in parallel. All parallel
learners are initialized with different random seeds and synchro-
nized at the end of each training epoch. Such a design supports a
vanilla ensemble strategy and stabilizes the learning process of the
agent.

In addition, we present a novel and effective way for learners to
communicate, i.e., sending the network parameters rather than the
gradients. Most existing libraries [12, 19, 24, 26] send the gradients
of learners for each sampled batch, following a traditional synchro-
nization approach on supervised learning. Such an approach is
inefficient for DRL algorithms since the learner will update the neu-
ral network hundreds of times within each training epoch, namely
it needs to send gradients hundreds of times. By taking advantage
of the soft update [21], we send the model parameters rather than

the gradients. The parameter of the models is amenable to commu-
nication because model size in DRL is not comparable to that in
other deep learning fields. Here, communication happens once at
the end of each epoch, which is a significantly lower frequency of
communication.

5 PERFORMANCE EVALUATION
We describe the GPU cloud platform, the performance metrics and
compared methods, and then evaluate the performance of FinRL-
Podracer for a stock trend prediction task.

5.1 GPU Cloud Platform
All experiments were executed on NVIDIA DGX-2 servers [4] in
an NVIDIA DGX SuperPOD platform [37], a cloud-native super-
computer. We use 256 CPU cores of Dual AMD Rome 7742 running
at 2.25GHz for each experiment. An NVIDIA DGX-2 server has 8
A100 GPUs and 320 GB GPU memory [4].

5.2 Performance Metrics
We evaluate the trading performance and training efficiency of the
FinRL-Podracer for a stock trend prediction task.

Data pre-processing. We select the NASDAQ-100 constituent
stocks as our stock pool, accessed at 05/13/2019 (the starting time of
our testing period), and use the datasets with two time granularities:
minute-level and daily. The daily dataset is directly downloaded
from Yahoo!Finance, while the minute-level dataset is first down-
loaded as raw data from the Compustat database through the Whar-
ton Research Data Services (WRDS) [32] and then pre-processed
to an open-high-low-close-volume (OHLCV) format. We split the
datasets into training period and backtesting period: the daily data
from 01/01/2009 to 05/12/2019 for training; the minute-level data
from 01/01/2016 to 05/12/2019 for training; For both datasets, we
backtest on the same period from 05/13/2019 to 05/26/2021.

Evaluation metrics. Six common metrics are used to evaluate
the experimental results:
• Cumulative return: the ratio between the final capital and the
initial capital.

• Annual return: the geometric average amount of money earned
by the agent each year.

• Annual volatility: the annual standard deviation of the return.
• Sharpe ratio: subtracting the annualized risk-free rate from the
annualized return, and then dividing by the annualized volatility.

• Max drawdown: the maximum percentage loss during the trad-
ing period.

• Training time: the training time with respect to the cumulative
return.
Compared methods. For trading performance evaluation, we

compare FinRL-Podracer and vanilla FinRL-Podracer (without agent
evolution) with FinRL [24, 26], RLlib [19], Stable Baseline3 [8], and
NASDAQ Composite/Invesco QQQ ETF. We use Proximal Policy
Optimization (PPO) [31] as the DRL algorithm in the reported re-
sults and fine-tune each library to maximize its performance. Each
library is allowed to use up to 80 GPUs.

For training efficiency evaluation, the experiments are conducted
on multiple GPUs. We compare with RLlib [19] since it has high
performance on distributed infrastructure. However, both FinRL

FinRL-Podracer: High Performance and Scalable Deep Reinforcement Learning for Quantitative Finance New York ’21, Nov. 3–5, 2021, New York, NY

May 13
2019

Oct 03 Feb 27
2020

Jul 21 Dec 10 May 6
2021

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

Cu
m

ul
at

iv
e

Re
tu

rn

FinRL-Podracer
FinRL-Podracer (vanilla)
RLlib
Stable Baseline 3
FinRL
QQQ

Figure 4: Cumulative returns on daily dataset during
05/13/2019 to 05/26/2021. Initial capital $1, 000, 000, transac-
tion cost percentage 0.2%, and Invesco QQQ ETF is a market
benchmark.

May 13
2019

Oct 03 Feb 27
2020

Jul 21 Dec 10 May 26
2021

1.0

2.0

3.0

4.0

5.0

Cu
m

ul
at

iv
e

Re
tu

rn

FinRL-Podracer
FinRL-Podracer (vanilla)
RLlib
Stable Baseline 3
FinRL
QQQ

Figure 5: Cumulative returns on minute dataset during
05/13/2019 to 05/26/2021. Initial capital $1, 000, 000, transac-
tion cost percentage 0.2%, Invesco QQQ ETF is a market
benchmark.

Cumul. return Annual return Annual volatility Max dropdown Sharpe ratio
FinRL-Podracer (Ours) 149.553%/362.408% 56.431%/111.549% 22.331%/33.427% -13.834%/-15.874% 2.12/2.42
FinRL-Podracer (vanilla) 73.546%/231.747% 30.964%/79.821% 23.561%/31.024% -18.428%/-21.002% 1.27/2.05
RLlib [19] 58.926%/309.54% 25.444%/99.347% 30.009%/31.893% -23.248%/-22.292% 0.91/2.33
Stable Baseline3 [12] 85.539%/218.531% 35.316%/76.28% 31.592%/34.595% -24.056%/-23.75% 1.12/1.82
FinRL [24] 78.255%/169.975% 32.691%/62.576% 37.641%/42.908% -26.774%/-27.267% 0.94/1.35
Invesco QQQ ETF 89.614% 36.763% 28.256% -28.559% 1.25

Table 2: Performance of stock trading on NASDAQ-100 constituent stocks with daily (red) and minute-level (blue) data.

0 500 1000 1500 2000 2500 3000 3500
Training Time (Seconds)

1.0

2.0

3.0

4.0

Cu
m

ul
at

iv
e

Re
tu

rn

FinRL-Podracer 8 GPUs
FinRL-Podracer 16 GPUs
FinRL-Podracer 32 GPUs
FinRL-Podracer 80 GPUs
RLlib 8 GPUs
RLlib 16 GPUs
RLlib 32 GPUs
RLlib 80 GPUs

Figure 6: Generalization performance on backtesting dataset,
using themodel snapshots of FinRL-Podracer and RLlib [19]
at different training time (wall clock time).

0 800 1600 2400 3200 3600
Training Time (Seconds)

0.0

1.0

2.0

3.0

4.0

Cu
m

ul
at

iv
e

Re
tu

rn

800 1600 2400 3200
0.0

1.0

2.0

3.0

4.0

Figure 7: Generalization performance of a model along the
agent evolution in the training process in FinRL-Podracer.

[24] and Stable Baseline 3 [8] do not support the training onmultiple
GPUs, thus we do not compare with them. To guarantee fairness,
we keep all adjustable parameters and computing resources the
same, such as the width of neural networks, total training steps,
number of workers, and GPU and CPU resources.

5.3 Trading Performance Analysis
We backtest the trading performance from 05/13/2019 to 05/26/2021
on both daily and minute-level dataset. From Fig. 4 and Fig. 5, all
DRL agents are able to achieve a better or equal performance than
the market in cumulative return, which demonstrates the profit po-
tentials of DRL-driven trading strategies. Comparing Fig. 4 with Fig.
5, we observe that all methods have a much better performance on
the minute-level dataset than that on the daily dataset. The trading

New York ’21, Nov. 3–5, 2021, New York, NY Zechu Li, Xiao-Yang Liu, Jiahao Zheng, Zhaoran Wang, Anwar Walid, and Jian Guo

Hyper-parameters Value
Total #GPUs 80
#GPUs per Agent 8
Optimizer Adam
Learning rate 2−14
Discount factor 𝛾 = 0.99
Total steps 220
Batch size 210
Repeat times 23
Replay buffer Size 212
Ratio clip (PPO) 0.25
Lambda entropy (PPO) 0.02
Evaluation interval (second) 64
Table 3: Hyperparameter settings.

performance of most agents is almost the same as that of the mar-
ket on daily dataset, however, all agents significantly outperform
the market if they have a larger dataset to explore. With a higher
granularity data, the Sharpe ratios are also lifted up to a new level.
From Table. 2, agents achieve Sharpe ratios of 2.42, 2.05, 2.33, 1.82,
1.35 on the minute-level dataset, which are 0.3, 0.78, 1.42, 0.7, and
0.41 higher than those on the daily dataset. Therefore, we conclude
that the capability to process large-scale financial data is critical
for the development of a profitable DRL-driven trading strategy
since the agent can better capture the volatility and dynamics of
the market.

From Table 2, Fig. 4, and Fig. 5, we also observe that our FinRL-
Podracer outperforms other baselines on both datasets, in terms of
expected return, stability, and Sharpe ratio. As can be seen from
Table 2, our FinRL-Podracer achieves the highest cumulative re-
turns of 149.533% and 362.408%, annual returns of 56.431% and
111.549%, and Sharpe ratios of 2.12 and 2.42, which are much higher
than the others. Furthermore, FinRL-Podracer also shows an out-
standing stability during the backtesting: it achieves Max dropdown
-13.834% and -15.874%, which is significantly lower than other meth-
ods. Consider the vanilla FinRL-Podracer as a direct comparison,
we find that vanilla FinRL-Podracer has a similar trading perfor-
mance with other baseline frameworks, and this is consistent with
expectation as they all use the same DRL algorithm for all ex-
periments. Such a performance gap between FinRL-Podracer and
vanilla FinRL-Podracer demonstrates the significant impact of the
generational evolution mechanism on the trading performance of
a DRL-driven trading strategy. This proves the effectiveness of the
hyper-parameter search and evaluation mechanism on the issues of
hyper-parameter sensitivity and overfitting in financial problems.

5.4 Training Efficiency Analysis
We compare the training efficiency of FinRL-Podracer with RLlib
[19] on a varying number of A100 GPUs, i.e., 8, 16, 32, and 80
A100 GPUs. We store the model snapshots at different training
time, say every 100 seconds, then later we use each snapshot model
to perform inference on the backtesting dataset and obtain the
generalization performance, namely, the cumulative return.

In Fig. 6, as the number of GPUs increases, both FinRL-Podracer
and RLlib achieve a higher cumulative return with the same training
time (wall-clock time). FinRL-Podracer with 80 GPUs has a much

steeper generalization curve than others, e.g., it can achieve a cumu-
lative return of 4.0 at 800s, which means it learns in a much faster
speed. However, FinRL-Podracer with 32 GPUs and 16 GPUs need
2, 200s and 3, 200s to achieve the same cumulative return, respec-
tively. The generalization curves of RLlib with different numbers of
GPUs are relatively similar, and we do not observe much speed-up.
For example, RLlib needs approximately 2, 200s to achieve a cumu-
lative return of 3.5, however, FinRL-Podracer needs 300s to achieve
the same cumulative return, which is 3× ∼ 7× faster than RLlib.

It is counter-intuitive that the increase of GPU resources
not onlymakes FinRL-Podracer have a fast training, but also
improves the trading performance over RLlib [19]. We know
from Fig. 4 and Fig. 5 that the orchestrator mechanism promotes the
trading performance of FinRL-Podracer, therefore, we empirically
investigate the agent evolution process. Fig. 7 explicitly demon-
strates an evolution of ten agents, where the selector chooses the
best model to train in the next generation every 800s. The inner
figure of Fig. 7 depicts the generalization curves of the ten agents in
the first generation (without using the agent evolution mechanism).
The curve with an orchestrator (the thick green curve) is much
higher than the other ten curves.

6 DISCUSSION AND CONCLUSION
In this paper, we have proposed a high-performance and scalable
deep reinforcement learning framework, FinRL-Podracer, to initiate
a paradigm shift from conventional supervised learning approaches
to RLOps in finance. FinRL-Podracer provides a highly automated
development pipeline of DRL-driven trading strategies on a GPU
cloud, which aims to help finance researchers and quantitative
traders overcome the steep learning curve and take advantage of
supercomputing power from the cloud platforms.

FinRL-Podracer achieved promising performance on a cloud plat-
form, mainly by following the two principles, the virtues of nested
hierarchies and getting smart from dumb things [14]. For low-level
training, FinRL-Podracer realizes nested hierarchies by empolying
hardware-oriented optimizations, including parallelism encapsula-
tion, GPU acceleration, and storage optimizations. As a high level
scheduling, FinRL-Podracer obtains a smart agent from hundreds
of weak agents, which is the essence of ensemble methods, by
employing a generational evolution mechanism. We further inves-
tigate the evolution and training layers in a followup work [25] for
a cloud-native solution. We believe that ensemble multiple weak
agents is preferable to aiming to train one strong agent. Thus we
propose a new orchestration mechanism, a tournament-based en-
semble training method [25] with asynchronous parallelism, which
involves relatively low communication overhead. Also, we observe
the great potential of massively parallel simulation, which lifts the
exploration capability up into a potentially new dimension.

FinRL-Podracer is our first step from building a standard DRL
pipeline of financial tasks to using DRL agents to understand the
dynamics of the markets. We believe that the development of FinRL-
Podracer is critical for the ecosystem of the FinRL community
[24][26] because it offers opportunities for many future directions.
First, FinRL-Podracer provides a way to take advantage of large-
scale financial data. Therefore, it is possible to allow DRL agents
to work in second or microsecond level and cover all stocks in the

FinRL-Podracer: High Performance and Scalable Deep Reinforcement Learning for Quantitative Finance New York ’21, Nov. 3–5, 2021, New York, NY

future, which is meaningful for the exploration and understand-
ing of the volatile and dynamic market. Moreover, training on the
cloud makes DRL agents adapt to much more complex environment
simulations and neural networks, thus can achieve wider DRL ap-
plications to various financial tasks, e.g., portfolio allocation, fraud
detection, DRL-driven insights for yield improvement and optimiza-
tion. Furthermore, the low-level optimizations in FinRL-Podracer
could be also useful for the future development of financial sim-
ulators, such as using the GPU-accelerated techniques to reduce
latency.

ACKNOWLEDGEMENT
This research used computational resources of the GPU cloud plat-
form [37] provided by the IDEA Research institute.

REFERENCES
[1] Sridhar Alla and Suman Kalyan Adari. 2021. What Is MLOps? In Beginning

MLOps with MLFlow. Springer, 79–124.
[2] H. Buehler, L. Gonon, J. Teichmann, and B. Wood. 2019. Deep hedging. Quanti-

tative Finance 19 (2019), 1271 – 1291.
[3] L. Chen and Qiang Gao. 2019. Application of deep reinforcement learning

on automated stock trading. IEEE 10th International Conference on Software
Engineering and Service Science (ICSESS) (2019), 29–33.

[4] Jack Choquette, Wishwesh Gandhi, Olivier Giroux, Nick Stam, and Ronny
Krashinsky. 2021. Nvidia a100 tensor core gpu: Performance and innovation.
IEEE Micro 41, 2 (2021), 29–35.

[5] Google Cloud. 2020. MLOps: Continuous delivery and automation pipelines
in machine learning. https://cloud.google.com/architecture/mlops-continuous-
delivery-and-automation-pipelines-in-machine-learning#mlops_level_0_
manual_process. Google Cloud, Jan. 07, 2020.

[6] Jacomo Corbo, Oliver Flemin, and Nicolas Hohn. 2021. It’s time for businesses to
chart a course for reinforcement learning. https://www.mckinsey.com/business-
functions/mckinsey-analytics/our-insights/its-time-for-businesses-to-chart-a-
course-for-reinforcement-learning. McKinsey Analytics, Apirl. 01, 2021.

[7] Quang-Vinh Dang. 2019. Reinforcement learning in stock trading. ICCSAMA
(2019).

[8] DLR-RM. 2021. Stable-baseline 3. https://github.com/DLR-RM/stable-baselines3.
[9] Lasse Espeholt, Raphaël Marinier, Piotr Stanczyk, KeWang, andMarcinMichalski.

2020. SEED RL: scalable and efficient deep-RL with accelerated central inference.
In Proceedings of the International Conference on Learning Representations (ICLR).

[10] Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Volodymir Mnih,
Tom Ward, Yotam Doron, Vlad Firoiu, Tim Harley, Iain Dunning, Shane Legg,
and Koray Kavukcuoglu. 2018. IMPALA: scalable distributed deep-RL with im-
portance weighted actor-learner architectures. In Proceedings of the International
Conference on Machine Learning (ICML).

[11] Matteo Hessel, Manuel Kroiss, Aidan Clark, Iurii Kemaev, John Quan, Thomas
Keck, Fabio Viola, and Hado van Hasselt. 2021. Podracer architectures for scalable
reinforcement learning. ArXiv abs/2104.06272 (2021).

[12] AshleyHill, Antonin Raffin,Maximilian Ernestus, AdamGleave, Anssi Kanervisto,
Rene Traore, Prafulla Dhariwal, Christopher Hesse, Oleg Klimov, Alex Nichol,
Matthias Plappert, Alec Radford, John Schulman, Szymon Sidor, and Yuhuai Wu.
2018. Stable baselines. https://github.com/hill-a/stable-baselines.

[13] Zhengyao Jiang, Dixing Xu, and Jinjun Liang. 2017. A deep reinforcement
learning framework for the financial portfolio management problem. ArXiv
abs/1706.10059 (2017).

[14] Kevin Kelly. 1994. Out of control: The rise of neo-biological civilization. Addison-
Wesley Longman Publishing Co., Inc.

[15] Marko Kolanovic and Rajesh T. Krishnamachari. 2017. Big data and AI strategies:
machine learning and alternative data approach to investing. https://www.
cognitivefinance.ai/single-post/big-data-and-ai-strategies. J.P. Morgan Securities
LLC, May. 18, 2017.

[16] Petter N. Kolm andG. Ritter. 2019. Modern perspectives on reinforcement learning
in finance. Econometrics: Mathematical Methods & Programming eJournal (2019).

[17] Mu Li, D. Andersen, J. Park, Alex Smola, Amr Ahmed, V. Josifovski, J. Long, E.
Shekita, and Bor-Yiing Su. 2014. Scaling distributed machine learning with the
parameter server. In BigDataScience ’14.

[18] Xinyi Li, Yinchuan Li, Yuancheng Zhan, and Xiao-Yang Liu. 2019. Optimistic bull
or pessimistic bear: Adaptive deep reinforcement learning for stock portfolio
allocation. ICML Workshop on Applications and Infrastructure for Multi-Agent
Learning (2019).

[19] Eric Liang, Richard Liaw, Robert Nishihara, Philipp Moritz, Roy Fox, Joseph
Gonzalez, Ken Goldberg, and Ion Stoica. 2017. Ray RLLib: a composable and
scalable reinforcement learning library. ArXiv abs/1712.09381 (2017).

[20] Jacky Liang, Viktor Makoviychuk, A. Handa, N. Chentanez, M. Macklin, and
D. Fox. 2018. GPU-accelerated robotic simulation for distributed reinforcement
learning. In Conf. on Robot Learning (CoRL).

[21] T. Lillicrap, Jonathan J. Hunt, A. Pritzel, N. Heess, T. Erez, Yuval Tassa, D. Silver,
and Daan Wierstra. 2016. Continuous control with deep reinforcement learning.
CoRR abs/1509.02971 (2016).

[22] Paul Lipton, Derek Palma, Matt Rutkowski, and Damian Andrew Tamburri. 2018.
TOSCA solves big problems in the cloud and beyond! IEEE Cloud Computing
(2018), 1–1. https://doi.org/10.1109/MCC.2018.111121612

[23] Xiao-Yang Liu, Zechu Li, Zhaoran Wang, and Jiahao Zheng. 2021. ElegantRL: A
Scalable and Elastic Deep Reinforcement Learning Library. https://github.com/
AI4Finance-Foundation/ElegantRL.

[24] Xiao-Yang Liu, Hongyang Yang, Qian Chen, Runjia Zhang, Liuqing Yang, Bowen
Xiao, and Christina Dan Wang. 2020. FinRL: a deep reinforcement learning
library for automated stock trading in quantitative finance. Deep Reinforcement
Learning Workshop at NeurIPS (2020).

[25] Xiao-Yang Liu, Hongyang Yang, Qian Chen, Runjia Zhang, Liuqing Yang, Bowen
Xiao, and Christina Dan Wang. 2021. ElegantRL-Podracer: Scalable and Elastic
Library for Cloud-Native Deep Reinforcement Learning. Deep Reinforcement
Learning Workshop at NeurIPS (2021).

[26] Xiao-Yang Liu, Hongyang Yang, Jiechao Gao, and Christina Dan Wang. 2021.
FinRL: Deep reinforcement learning framework to automate trading in quantita-
tive finance. ACM International Conference on AI in Finance (ICAIF) (2021).

[27] Rick Merritt. 2020. What Is MLOps? https://blogs.nvidia.com/blog/2020/09/03/
what-is-mlops/. NVIDIA, Sep. 03, 2020.

[28] Melanie Mitchell. 1996. An introduction to genetic algorithms.
[29] V Mnih, K Kavukcuoglu, D Silver, Andrei A. Rusu, Joel Veness, Marc G. Bellemare,

Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig
Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan
Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis. 2015. Human-level
control through deep reinforcement learning. Nature 518(7540) (2015), 529–533.

[30] G. Nuti, Mahnoosh Mirghaemi, P. Treleaven, and Chaiyakorn Yingsaeree. 2011.
Algorithmic trading. Computer 44 (2011), 61–69.

[31] John Schulman, F. Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
2017. Proximal policy optimization algorithms. ArXiv abs/1707.06347 (2017).

[32] Wharton Research Data Service. 2015. Standard & poor’s compustat. Data
retrieved from Wharton Research Data Service.

[33] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George
Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershel-
vam, Marc Lanctot, et al. 2016. Mastering the game of Go with deep neural
networks and tree search. nature 529, 7587 (2016), 484–489.

[34] David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George
van den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershel-
vam, Marc Lanctot, Sander Dieleman, Dominik Grewe, John Nham, Nal Kalch-
brenner, Ilya Sutskever, Timothy Lillicrap, Madeleine Leach, Koray Kavukcuoglu,
Thore Graepel, and Demis Hassabis. 2016. Mastering the game of Go with deep
neural networks and tree search. Nature 529(7587) (2016), 484–489.

[35] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja
Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton,
et al. 2017. Mastering the game of go without human knowledge. nature 550,
7676 (2017), 354–359.

[36] Richard S Sutton and Andrew G Barto. 2018. Reinforcement learning: An intro-
duction. MIT press.

[37] NVIDIA DGX A100 system reference architecture. 2020. NVIDIA DGX SuperPOD:
Scalable infrastructure for AI leadership. NVIDIA Corporation.

[38] Damian A. Tamburri. 2020. Sustainable MLOps: Trends and challenges. In 2020
22nd International Symposium on Symbolic and Numeric Algorithms for Scientific
Computing (SYNASC). 17–23. https://doi.org/10.1109/SYNASC51798.2020.00015

[39] P. Treleaven, M. Galas, and V. Lalchand. 2013. Algorithmic trading review.
Commun. ACM 56 (2013), 76–85.

[40] Google Trends. [n.d.]. What Is MLOps? https://www.google.com/trends.
[41] Jia WU, Chen WANG, Lidong XIONG, and Hongyong SUN. 2019. Quantita-

tive trading on stock market based on deep reinforcement learning. In 2019
International Joint Conference on Neural Networks (IJCNN). 1–8.

[42] Zhuoran Xiong, Xiao-Yang Liu, Shan Zhong, Hongyang Yang, and Anwar Walid.
2018. Practical deep reinforcement learning approach for stock trading. NeurIPS
Workshop (2018).

[43] Hongyang Yang, Xiao-Yang Liu, Shan Zhong, and Anwar Walid. 2020. Deep
reinforcement learning for automated stock trading: An ensemble strategy. ACM
International Conference on AI in Finance (ICAIF) (2020).

[44] Zihao Zhang, Stefan Zohren, and Stephen Roberts. 2020. Deep reinforcement
learning for trading. The Journal of Financial Data Science 2(2) (2020), 25–40.

https://cloud.google.com/architecture/mlops-continuous-delivery-and-automation-pipelines-in-machine-learning##mlops_level_0_manual_process
https://cloud.google.com/architecture/mlops-continuous-delivery-and-automation-pipelines-in-machine-learning##mlops_level_0_manual_process
https://cloud.google.com/architecture/mlops-continuous-delivery-and-automation-pipelines-in-machine-learning##mlops_level_0_manual_process
https://www.mckinsey.com/business-functions/mckinsey-analytics/our-insights/its-time-for-businesses-to-chart-a-course-for-reinforcement-learning
https://www.mckinsey.com/business-functions/mckinsey-analytics/our-insights/its-time-for-businesses-to-chart-a-course-for-reinforcement-learning
https://www.mckinsey.com/business-functions/mckinsey-analytics/our-insights/its-time-for-businesses-to-chart-a-course-for-reinforcement-learning
https://github.com/DLR-RM/stable-baselines3
https://github.com/hill-a/stable-baselines
https://www.cognitivefinance.ai/single-post/big-data-and-ai-strategies
https://www.cognitivefinance.ai/single-post/big-data-and-ai-strategies
https://doi.org/10.1109/MCC.2018.111121612
https://github.com/AI4Finance-Foundation/ElegantRL
https://github.com/AI4Finance-Foundation/ElegantRL
https://blogs.nvidia.com/blog/2020/09/03/what-is-mlops/
https://blogs.nvidia.com/blog/2020/09/03/what-is-mlops/
https://doi.org/10.1109/SYNASC51798.2020.00015
https://www.google.com/trends

	Abstract
	1 Introduction
	2 Related Works
	2.1 DRL in Finance
	2.2 Principle of MLOps

	3 Stock Trend Prediction Task
	4 FinRL-Podracer Framework
	4.1 Overview
	4.2 Scalable Evolution Layer
	4.3 Packaging Worker-Learner into Pod
	4.4 High Performance Training Layer

	5 Performance Evaluation
	5.1 GPU Cloud Platform
	5.2 Performance Metrics
	5.3 Trading Performance Analysis
	5.4 Training Efficiency Analysis

	6 Discussion and Conclusion
	References

