Data-Driven Deep Reinforcement Learning in
Quantitative Finance

Xiao-Yang Liu', Jingyang Rui?, Jiechao Gao®, Liuging Yang', Hongyang Yang!,
Zhaoran Wang*, Christina Dan Wang®, Jian Guo®
!Columbia University; 2The University of Hong Kong; ®University of Virginia;
“Northwestern University; ®New York University (Shanghai); SIDEA Research.
XL2427@columbia.edu; zhaoranwang@gmail.com; guojian@idea.edu.cn

Abstract

Deep reinforcement learning (DRL) has shown huge potentials in quantitative
finance recently. However, due to the high complexity of real-world markets, raw
historical financial data often involve large noise and may not reflect the future of
markets, degrading the performance of DRL agents in practice. By simulating the
trading mechanism of real markets on processed datasets, market simulation envi-
ronments play important roles in addressing this issue. However, the simulation
accuracy heavily relies on the quality of processed datasets, while building and
using datasets is often artisanal — painstaking and expensive. Moreover, training
DRL agents on large datasets imposes a challenge on simulation speed. In this
paper, we present a NeoFinRL framework that includes tens of Near real-market
environments for data-driven Financial Reinforcement Learning. First, NeoFinRL
separates financial data processing from the design pipeline of DRL-based strategy
and provides open-source data engineering tools. Second, NeoFinRL provides
tens of standard market environments for various trading tasks. Third, NeoFinRL
enables massively parallel simulations by exploiting thousands of GPU cores.

1 Introduction

Compared to traditional supervised learning, deep reinforcement learning (DRL) has shown advan-
tages in many complex decision-making problems [[l,, 2, B]. Recent researches have also proved the
feasibility of applying DRL in quantitative finance [4, 5, 6, 7]. However, due to the high cost of train-
ing a highly exploratory agent in real-world markets, researchers use historical financial datasets to
train DRL agents [4, §]. Nevertheless, due to the high complexity of real-world markets, raw his-
torical financial data involve significant noise and may not reflect the future of markets. This issue
usually degrades the performance of DRL agents in practice. It is challenging to apply DRL algo-
rithms in real-time tradings.

Currently, researchers build their market simulation environments on processed datasets to address
this issue. For example, FinRL library [5] provides a data processor connected to Yahoo! Finance
and builds its stock trading environments based on historical price data. However, the data processor
of FinRL is mainly designed for demonstration and not complete for different trading tasks. Users
often need to clean data and extract features manually to achieve satisfactory performance. Moreover,
there are no standard and unified evaluation protocols for different trading tasks. It is challenging and
time-consuming for researchers to test and compare their trading strategies across different trading
environments.

In this paper, we develop a NeoFinRL framework that includes tens of Near real-market
environments for data-driven Financial Reinforcement Learning. First, we apply the DataOps
paradigm [8] to the data engineering pipeline, providing agility to model deployment, as shown

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

::[Agent]_

State | | Reward Action
R, R A,
_I t+
1S, Environment |<—
mm— ! y

Unified Data Processor

Figure 1: Overview of automated trading using deep reinforcement learning with DataOps paradigm.

Data Layer Environment Layer AgentLayer
Unified Data Processor Plug-and-Play RL Agents/Libraries
Data Data Feature q . .
[Accessing Cleaning| | Engineering [State-Actlon-Reward Tralmng] [Testmg]—‘-

x T + -_I Paper trading
: 1 : L or live trading
1 ! 1Adiust _

: e Adjust PO

1

Figure 2: Overview of NeoFinRL.

in Fig. [l. We offer a unified and automated data processor enabling data accessing, data cleaning,
and feature engineering. Second, we build tens of standard near real-market DRL environments for
various trading tasks such as high-frequency trading, cryptocurrencies trading, portfolio allocation.
The environments are directly connected to our data processors. High-quality large datasets can be
generated efficiently and encapsulated into our environments. Third, to improve the performance
of DRL agents in large datasets, we utilize thousands of GPU cores to perform massively parallel
simulations in the training stage.

2 Proposed NeoFinRL Framework

MDP Model for Trading Tasks: We model a trading task as a Markov Decision Process (MDP)
(S, A, P,r,v) [9], where S and A denote the state space and action space, respectively, P(s’|s, a) is
the transition probability, (s, a) is a reward function, and v € (0, 1) is a discount factor. Specificly,
the state denotes the observations that a DRL agent receives from a market environment; the action
space consists of actions that an agent is allowed to take at a state; the reward function r(s, a, s’) is
the incentive mechanism for agents to learn a better policy. A trading agent aims to learn a policy
7(s¢|a;) that maximizes the expected return defined as R = Y ;=) v'7(s¢, ar).

Overview of NeoFinRL: We adopt a layered structure for DRL in finance, as shown in Fig. J]. Ne-
oFinRL consists of three layers: data layer, environment layer, and agent layer. Each layer executes
its functions and is relatively independent. Meanwhile, layers interact through end-to-end interfaces
to implement the complete workflow of algorithm trading. Our codes are available online at XXXX.

DataOps for Data-Driven DRL in Finance: We follow the DataOps paradigm [g] in the data layer.
First, we establish a standard pipeline for financial data engineering in RL, ensuring data of different

Platforms Type Supported Range and Frequency Request Limits Raw Data Preprocessed Data Account
Yahoo! Finance ~ US Securities Depends on frequency, Imin 2,000/hour OHLCV,df ~ Prices & Indicators, mp.array ~ No
CCXT Cryptocurrency ~ Depends on specific APL, lmin ~ Depends on specific APl OHLCV,df Prices & Indicators, np.aray ~ No
WRDS.TAQ ~ US Securities 2003-now, Lms § requests at the same time Intraday Trades, df Prices & Indicators, np.ammay ~ Yes
Alpaca US Stocks, ETFs 2015-now, Imin Depends on account OHLCV,df Prices & Indicators, np.array ~~ Yes
JoinQuant CN Securities 2005-now, Imin Jrequests atthe same time ~~ OHLCV, df ~ Prices & Indicators, np.array ~ Yes
QuantConnect US Securities 1998-now, s NA OHLCV,df ~ Prices & Indicators, np.array ~ Yes

Table 1: Supported data platforms. OHLCV means open, high, low, close, volume data.

2

XXXX

Stock Trading (Backtesting) Stock Trading (Paper trading)

2.00% —— ElegantRL Agent —— ElegantRL Agent
—— Stable-Baselines3 Agent 2.00% —— Stable-Baselines3 Agent
1.00% — DJIA) — DJIA
1.00% -
£ 0.00% £
2 2 0.00%1
x —1.00% x
—1.00%
—2.00%
—2.00%
-3.00%
08-15 08-17 08-20 08-24 08-26 08-30 09-01 09-03 09-08 09-10 09-14 09-16
Year 2021 Year 2021

Figure 3: Cumulative returns (5-minute) of stock trading in backtesting and paper trading.

ElegantRL []10] Stable-baselines3 []11] DJIA
Cumul. return 0.968% /-0.652% 1.335%/0.191% 0.099% /-1.56%
Annual return 22.425% /-16.746% 32.106% / 5.492% 2.108% / -35.522%
Annual volatility | 15.951% /14.113% 19.871% / 15.953% 9.196% / 9.989%
Sharpe ratio 1.457/-1.399 1.621/0.447 0.289/-4.894
Max drawdown -2.657% /-1.871% -2.932% /-1.404% -1.438% /-2.220%

Table 2: Performance of backtesting (red) and paper trading (blue) for stock trading.

formats from different sources can be incorporated in a unified framework. Second, we automate this
pipeline with a data processor, which can access data, clean data, and extract features from various
data sources with high quality and efficiency. Our data layer provides agility to model deployment.
The supported platforms and related information are shown in Table [{.

Massively Parallel Simulation: We utilize thousands of GPU cores to perform massively parallel
simulation, which significantly accelerates the training process of DRL agents. The complete train-
ing process, including receiving states, taking actions, simulating markets, calculating rewards, and
updating neural network models, is conducted on GPUs. In each CUDA core, a trading agent inter-
acts with a market environment to produce state-action-reward sequences. Then all the sequences
are transferred and stored in one replay buffer and used to update an aggregate learner and evalua-
tor. By adopting this technique, we successfully achieve parallel simulation of hundreds of market
environments to improve the performance of DRL trading agents in large datasets.

Plug-and-Play: In the development pipeline, we separate market environments from the data layer
and the agent layer. Any DRL agent can be directly plugged into our environments, then trained and
tested. Different agents/algorithms can be compared by running on the same benchmark environment
to achieve fair evaluations.

Training-Testing-Trading Pipeline: We employ a training-testing-trading pipeline. The DRL agent
first learns from the training environment and is then validated in the validation environment for
further adjustment. Then the validated agent is tested in historical datasets. Finally, the tested agent
will be deployed in paper trading or live trading markets. First, this pipeline solves the information
leakage problem because the trading data are never leaked when adjusting agents. Second, a unified
pipeline allows fair comparisons among different algorithms and strategies.

3 Performance Evaluation

To provide benchmarks for researchers to test and compare with, we select several typical trading
tasks and provide corresponding benchmark environments, including stock trading, portfolio alloca-
tion, cryptocurrency trading, and so on. We conduct experiments on stock trading and cryptocurrency
trading.

3.1 Experiment Settings

Stock trading task: We select the 30 components in Dow Jones Industrial Average (DJIA) as our
stock pool. We use the Proximal Policy Optimization (PPO) algorithm [[12] of ElegantRL []10],
Stable-baselines3 [|1 1], and RLIib [|]13] to train agents and use DJIA as the baseline. We use 1-minute

Cryptocurrency Trading (Backtesting) Cryptocurrency Trading (Paper trading)

—— ElegantRL Agent 20.00% —— ElegantRL Agent
—— Buy-and-hold BTC —— Buy-and-hold BTC

)
15.00% 15.00%

10.00% 10.00%

Return

5.00% 5.00%

Return

0.00%
0.00%

—5.00%

—5.00%
—10.00%
08-15 08-18 08-21 08-24 08-27 08-30 09-01 09-04 09-07 09-10 09-13 09-16

Year 2021 Year 2021

Figure 4: Cumulative returns (5-minute) of cryptocurrency trading in backtesting and paper trading.

ElegantRL [|10] BTC buy and hold
Cumul. return 10.857% / 4.844% 1.332%/-1.255%
Annual return 360.823% /121.380% | 21.666% /5.492%
Annual volatility 59.976% / 65.857% 47.410% / 57.611%
Sharpe ratio 2.992 /1.608 0.657/-0.113
Max drawdown -6.396% / -10.474% -7.079% / -14.849%

Table 3: Performance of backtesting (red) and paper trading (blue) for cryptocurrency trading.

data from 06/01/2021 to 08/15/2021 for training and data from 08/16/2021 to 08/31/2021 for valida-
tion (backtesting), and then we conduct paper trading from 09/03/2021 to 09/16/2021. The historical
data and real-time data are accessed from the Alpaca database and paper trading API.

Cryptocurrency trading task: We select 10 representative cryptocurrencies as our pool. We use
the PPO algorithm [|12] of ElegantRL [|L0] to train an agent and use the Bitcoin (BTC) price as the
baseline. We use 5-minute data from 06/01/2021 to 08/14/2021 for training and data from 08/15/2021
to 08/31/2021 for validation (backtesting). Then we retrain the agent using data from 06/01/2021
to 08/31/2021 and conduct paper trading from 09/01/2021 to 09/15/2021. The historical data and
real-time data are accessed from Binance.

3.2 Trading Performance

Stock trading (backtesting): Both ElegantRL [|L0] agent and Stable-baselines3 [|11] agent outper-
form DJIA in annual return and Sharpe ratio, as shown in Fig. § and Table J|. The ElegantRL agent
achieves an annual return of 22.425% and a Sharpe ratio of 1.457. The Stable-baselines3 agent
achieves an annual return of 32.106% and a Sharpe ratio of 1.621. To provide fair comparisons, we
did not draw the curve of RLIib [[L3] since its performance is bad. Maybe we did not tune it well
(hope to update it later).

Stock trading (paper trading): The performances of ElegantRL agent, Stable-baselines3 agent and
the baseline DJIA are shown in Fig. [and Table . Both ElegantRL agent and Stable-baselines3
agent outperform the baseline. The paper trading results are consistent with the backtesting results.

Cryptocurrency trading (backtesting): The ElegantRL agent outperforms the benchmark (BTC
price) in most performance metrics, as shown in Fig. §| and Table . It achieves an annual return of
360.823% and a Sharpe ratio of 2.992.

Cryptocurrency trading (paper trading): The ElegantRL agent outperforms the benchmark (BTC
price) in the paper trading stage, as shown in Fig. M and Table B. The paper trading results are
consistent with the backtesting results.

4 Conclusion

In this paper, we follow the DataOps paradigm to develop a NeoFinRL framework. NeoFinRL
provides open data engineering tools, various market environments and enables massively parallel
simulation. For future work, we will extend to incorporate more market environments and support
more data sources and DRL libraries, making NeoFinRL more complete.

References

[1] David Silver, Julian Schrittwieser, Karen Simonyan, loannis Antonoglou, Aja Huang, Arthur
Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game
of go without human knowledge. nature, 550(7676):354-359, 2017.

[2] Santiago Ontanén, Gabriel Synnaeve, Alberto Uriarte, Florian Richoux, David Churchill, and
Mike Preuss. A survey of real-time strategy game ai research and competition in starcraft. /[EEE
Transactions on Computational Intelligence and Al in games, 5(4):293-311, 2013.

[3] Xue Bin Peng, Erwin Coumans, Tingnan Zhang, Tsang-Wei Lee, Jie Tan, and Sergey
Levine. Learning agile robotic locomotion skills by imitating animals. arXiv preprint
arXiv:2004.00784, 2020.

[4] Zhuoran Xiong, Xiao-Yang Liu, Shan Zhong, Hongyang Yang, and Anwar Walid. Practical
deep reinforcement learning approach for stock trading. Workshop on Challenges and Oppor-
tunities for Al in Financial Services, NeurIPS, 2018.

[5] Xiao-Yang Liu, Hongyang Yang, Qian Chen, Runjia Zhang, Liuging Yang, Bowen Xiao, and
Christina Dan Wang. FinRL: A deep reinforcement learning library for automated stock trading
in quantitative finance. Deep RL Workshop, NeurIPS, 2020.

[6] Zihao Zhang, Stefan Zohren, and Stephen Roberts. Deep reinforcement learning for trading.
The Journal of Financial Data Science, 2(2):25-40, 2020.

[7] Tidor-Vlad Pricope. Deep reinforcement learning in quantitative algorithmic trading: A review.
arXiv preprint arXiv:2106.00123, 2021.

[8] Crystal Valentine and William Merchan. Dataops: An agile methodology for data-driven orga-
nizations. https://www.oracle.com/a/ocom/docs/oracle-ds-data-ops—-map-r.pdf,
2018.

[9] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press,
2018.

[10] Xiao-Yang Liu, Zechu Li, Zhaoran Wang, and Jiahao Zheng. ElegantRL: A lightweight and sta-
ble deep reinforcement learning library. https://github.com/AI4Finance-Foundation/
ElegantRL, 2021.

[11] Antonin Raffin, Ashley Hill, Maximilian Ernestus, Adam Gleave, Anssi Kanervisto, and Noah
Dormann. Stable baselines3. https://github.com/DLR-RM/stable-baselines3, 2019.

[12] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv:1707.06347,07 2017.

[13] Eric Liang, Richard Liaw, Robert Nishihara, Philipp Moritz, Roy Fox, Ken Goldberg, Joseph
Gonzalez, Michael Jordan, and Ion Stoica. RLIib: Abstractions for distributed reinforcement
learning. In Proceedings of the 35th International Conference on Machine Learning, volume 80,
pages 3053-3062. PMLR, 1015 Jul 2018.

https://www.oracle.com/a/ocom/docs/oracle-ds-data-ops-map-r.pdf
https://github.com/AI4Finance-Foundation/ElegantRL
https://github.com/AI4Finance-Foundation/ElegantRL
https://github.com/DLR-RM/stable-baselines3

	Introduction
	Proposed NeoFinRL Framework
	Performance Evaluation
	Experiment Settings
	Trading Performance

	Conclusion

