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ABSTRACT A high-performance method was
developed for protein secondary structure predic-
tion based on the dual-layer support vector machine
(SVM) and position-specific scoring matrices
(PSSMs). SVM is a new machine learning technology
that has been successfully applied in solving prob-
lems in the field of bioinformatics. The SVM’s perfor-
mance is usually better than that of traditional
machine learning approaches. The performance was
further improved by combining PSSM profiles with
the SVM analysis. The PSSMs were generated from
PSI-BLAST profiles, which contain important evolu-
tion information. The final prediction results were
generated from the second SVM layer output. On the
CB513 data set, the three-state overall per-residue
accuracy, Q3, reached 75.2%, while segment overlap
(SOV) accuracy increased to 80.0%. On the CB396
data set, the Q3 of our method reached 74.0% and the
SOV reached 78.1%. A web server utilizing the
method has been constructed and is available at
http://www.bioinfo.tsinghua.edu.cn/pmsvm. Proteins
2004;54:738–743. © 2004 Wiley-Liss, Inc.
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INTRODUCTION

A large number of genome sequences have been pro-
duced in high-throughput experiments. The next step is to
analyze these genome and protein sequences to find new
gene functions.1 The prediction of protein structure and
function from amino acid sequences is one of the most
important problems in molecular biology. This problem is
becoming more pressing as the number of known protein
sequences is explored as a result of genome and other
sequencing projects, and the protein sequence–structure
gap is widening rapidly.2,3 Therefore, computational tools
to predict protein structures are badly needed to narrow
the widening gap. Although the prediction of three-
dimensional (3D) protein structures is the ultimate goal,
the structure still cannot be accurately predicted directly
from sequences. An intermediate but useful step is to
predict the protein secondary structure, which provides
some knowledge and simplifies the complicated 3D struc-
ture prediction problem.

The fundamental elements of the secondary structure of
proteins are �-helices, �-sheets, coils, and turns. Some
methods have been developed for defining various protein
secondary structure elements from the atomic coordinates
in the Protein Data Bank (PDB), such as DSSP,4 STRIDE,5

and DEFINE.6 According to DSSP, 8 types of protein
secondary structure elements were classified and denoted
by letters: H (�-helix), E (extended �-strand), G (310 helix),
I (�-helix), B (isolated �-strand), T (turn), S (bend) and “_”
(coil). The 8 classes are usually reduced to three states,
helix (H), sheet (E), and coil (C) by different reduction
methods.7 Thus, the secondary structure prediction can be
analyzed as a typical three-state pattern recognition or
classification problem, where the secondary structure class
of a given amino acid residue in a protein is predicted
based on its sequence features.

Since the 1970s, many methods have been developed for
predicting protein secondary structures. Early works usu-
ally relied on the single-residue statistics in various second-
ary structural elements, for example, the Chou–Fasman
method8 and the Garnier–Osguthorpe–Robson (GOR I)
method.9 Nearly 20 years later, a significant improvement
was made in the PHD method,10 which is a three-level
neural network including some machine learning tech-
niques. After the PHD method, many further neural
networks and machine learning refinements were devel-
oped.11–13 Several machine learning approaches have suc-
cessfully predicted protein secondary structures, and pre-
diction accuracies were further improved. In 2001, Hua
and Sun14 introduced a new method, support vector ma-
chine (SVM), which is based on statistical learning theory
(SLT). The SVM method achieved good segment overlap
accuracy, SOV � 76.2%, and good three-state overall
per-residue accuracy, Q3 � 73.5%.14

Here, we describe an improved dual-layer SVM com-
bined with a position-specific scoring matrix (PSSM) gener-
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ated from PSI-BLAST. The combined method, which is
referred to as PMSVM, provides a good SOV of 80.0% and
Q3 of 76.2%, which is nearly 3% higher than the simple
SVM method’s SOV and Q3.14 The method is also com-
pared with existing prediction methods. The results show
that our method more effectively predicts secondary struc-
tures.

MATERIALS AND METHODS
Data Set

Two data sets are frequently used in protein secondary
structure predictions to test algorithms. One is the RS126
data set, which include 126 protein chains and was
developed by Rost and Sander.10 The other data set, which
is called CB513, is much larger. It was constructed by Cuff
and Barton,7 and contains 513 protein chains. Almost all
sequences in the RS126 set are included in the CB513 set.
Both are nonhomologous, but the homology measurement
of CB513 is more strict than in the RS126 set. Removal of
protein chains contained in both the RS126 set and the
CB513 set gives another data set, which include 396
protein sequences and is named the CB396 set. RS126 was
mostly used to develop early prediction methods with
CB513 set and CB396, now widely used. The CB513 and
CB396 sets were used to compare the present algorithm
with other prediction method.

The Definition of Protein Secondary Structure

The automatic assignments of secondary structure to
experimentally determined 3D structures are usually per-
formed using DSSP,4 STRIDE,5 and DEFINE.6 This work
exclusively used the DSSP assignments, which distinguish
the secondary structure into 8 categories: H (�-helix), G
(310 helix), I (�-helix), E (extended �-strand), B (isolated
�-strand), T (turn), S (bend), and coil (“_”). The 8 structure
classes were reduced into 3 classes. There are four main
methods to perform the reduction process. (1) DSSP: H, G
to H; E, B to E; all other states to C; (2) DSSP: H to H; E to
E; all other states to C; (3) DSSP: H, G, I to H; E to E; all
other states to C; and (4) DSSP: H, G to H; E to E; all other
states to C.

In this article, definition (1) was adopted, because it is
considered to be the strictest definition, which usually
results in lower prediction accuracy than other definitions.

PSI-BLAST Profiles

This work used multiple-sequence alignment profiles
generated from the PSI-BLAST15 program for each protein
chain in the CB513 and CB396 sets. First, we obtained a
database, which contained all known databases: all nonre-
dundant GenBank translations, PDB, SwissPort, PIR
databank, and PRF databank. Then the low-complexity
regions, transmembrane regions, and coiled-coil segments
were removed from the database. A program named pfilt
was used to remove these regions.16 Then, encoded BLAST
data bank files were generated from filtered FASTA files.
Finally, the PSI-BLAST program was used to query each
protein in the CB513 and CB396 sets against the filtered
NR database to generate PSSM profiles. These profiles

were scaled to the required 0–1 range using the standard
logistic function

f�x� �
1

1 � exp��x�
,

where x is the raw profile matrix value. These profiles were
then used as the input information to the first-layer SVM.

Support Vector Machine

The SVM is a new machine learning method that
developed rapidly and has been widely used in many kinds
of pattern recognition problems. The basic method of SVM
is to transform the samples into a high-dimension Hilbert
space and to seek a separating hyperplane in this space.
The separating hyperplane, which is called the optimal
separating hyperplane (OSH), is chosen in such a way as to
maximize its distance from the closest training samples.
As a supervised machine learning technology, SVM is
well-founded theoretically on statistical learning theory.
SVM has been successfully applied to many fields of
pattern recognition, including object recognition,17 speaker
identification,18 and text categorization.19 The SVM usu-
ally outperforms other machine learning technologies,
including Neural Networks and K-Nearest Neighbor clas-
sifiers. In recent years, the SVM has been used in bioinfor-
matics, including gene expression profile classification,
detection of remote protein homologies and recognition of
translation initiation sites. Hua and Sun14 used a single-
layer SVM to analyze protein secondary structure with
excellent prediction results (in this article, this method is
called the simple SVM). More details about SVM can be
found in Vapnik’s publications.20,21

Here, we describe a dual-layer SVM system used to
predict secondary structure. The dual-layer SVM system
combined with the PSI-BLAST profiles provides more
accurate prediction than Hua and Sun’s14 simple SVM
prediction system.

Coding Scheme

As with Hua and Sun’s work,14 the present analysis
used the classical local coding scheme of the protein
sequences with a sliding window. PSI-BLAST matrix with
n rows and 20 columns can be defined for single sequence
with n residues. For the first layer in the prediction
system, each residue is coded as a 21-dimensional vector,
where the first 20 elements of the vector are the correspond-
ing elements in PSI-BLAST matrix. For the second layer,
the vector corresponding to a residue has 4 elements,
where the first 3 elements represent the 3 secondary
structures (H, E, C). The last unit was added in order to
allow a window to extend over the N- and the C-terminus.
If the window length is l, the dimension of the feature
vector is 21*l for the first layer and 4*l for the second layer.

Prediction System Structure

A dual-layer SVM structure was used in the prediction
system (see Fig. 1). The first layer is an SVM classifier that
classifies each residue of each sequence into the 3 second-
ary structure classes (H, E, or C). The one-against-rest
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Fig. 1. The dual-layer architecture of the PMSVM system. The system include three parts: the PSI-BLAST profile, the first layer, and the second
layer. The profile is tranformed into a number of 21*15 demension vectors using the slide-window method. These vectors are input into the first-layer
SVM. The outputs of the first-layer SVM are a number of 3D vectors representing the probability that the residue belongs to that class. Using the
slide-window method, the outputs of the first-layer SVM are tranformed into a number of 4*13 dimensional vector, which are used as the inputs of the
second-layer SVM. The final decisions are based on the outputs of the second-layer SVM.
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strategy was used for the multiclass classification, so there
were three outputs for each residue. The outputs represent
the probability that the residue belongs to that class. Since
the consecutive patterns are correlated (e.g., a helix con-
tains at least 4 consecutive patterns, and a sheet contains
at least 3 consecutive patterns), the second-layer SVM
classifier filtered successive outputs from the first layer.
The target outputs of the second layer were the same as
the first layer. As with the first-layer SVM, the second
layer also uses the one-against-rest strategy, with each
residue classified into the class with the largest output
value.

Training and Testing

Seven-fold cross-validation was used on the CB396 and
CB513 data sets to test the method’s efficiency. The whole
data set was randomly divided into 7 subsets of equal size.
In each validation, one subset was used for testing while
the rest was used for training. Several parameters were
regulated to optimize the training. This analysis used the
radial basis function (RBF) kernel in both the first- and the
second-layer SVM, where � is a parameter to be deter-
mined. The analysis used the soft-margin SVM, so the
regularization parameter C also needed to be regulated. �1

and C1 were defined as the gamma parameter and the
regularization parameter in the first-layer SVM, while �2

and C2 were defined as the gamma parameter and the
regularization parameter in the second-layer SVM. For
the CB513 data set, �1 � 0.05, C1 � 2.3, �2 � 2.5, and C2 �

2.0; for the CB396 data set, �1 � 0.05, C1 � 2.0, �2 � 2.4,
and C2 � 2.5.

K�xi, xj� � exp(���xi � xj�
2) (1)

Reliability Index

The prediction reliability index (RI) was used to assess
the effectiveness of the approaches for the prediction of the
secondary structure of a new sequence. The RI offers an
excellent tool for focusing on key regions having high
prediction accuracy. There are different definitions of the
RI. Here, we used a definition similar to that proposed by
Rost and Sander10: RI � INTEGER [(maximal_output(I) �
second_largest_output(I)]/0.5). If the value of RI 	 9, then
set RI � 9, so the value of RI is an integer between 0 and 9.
The distribution of the prediction accuracy with different
RIs is illustrated in Figure 2. The prediction accuracy of
residues with higher RI values is much better than those
with lower RI values. Therefore, the definition of RI
reflects the prediction reliability.

RESULTS AND DISCUSSION

Several standard performance measures were used to
assess prediction accuracy. The three-state overall per-
residue accuracy (Q3), the Matthew’s correlation coeffi-
cients (CH, CE, CC), and the SOV were used to evaluate the
accuracy.10,22,23 The per-residue accuracies for each type
of secondary structure (QH, QE, QC, QH

pre, QE
pre, QC

pre) were
also calculated. The PMSVM method was compared with

Fig. 2. The Q3 distribution on different Reliability indices (from 0 to 9).
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Hua and Sun’s simple SVM method and the famous PHD
method. The results from the PMSVM method are very
good. On the CB513 set, the SOV was 80.0%, nearly 4%
higher than that of the simple SVM method (76.2%). The
three-state per-residue accuracy Q3 was 75.2%, which is
nearly 2% higher than the simple SVM method (73.5%)
and 3% higher than the PHD method. The results obtained
on the CB396 set was slightly lower than the results on the
CB513. Cuff and Barton7 also found that many other
methods have slightly lower accuracies with the CB396
set. More comparisons with other methods are shown in
Table I.

The prediction accuracies using only the first-layer SVM
have been computed. Although the value of Q3 was nearly
the same as with the dual-layer prediction method, the
SOV was about 2% lower. The results reflect the fact that
the second layer filters some noise from the first layer and
improves the accuracies.

A web prediction system was developed using the
PMSVM method and is available at http://www.bioinfo.
tsinghua.edu.cn/pmsvm. This webpage was tested with
several new protein sequences in the PDB with good
results. The webserver was also used to predict some
secondary structures of severe acute respiratory syndrome
(SARS) proteins, which we hope will provide useful infor-
mation to experimental biologists.

Further improvements of the prediction method will
be made in future work. SVM is one of the best available
machine learning methods, but it is still a passive
learning method. In recent years, boosting methods and
active learning methods have developed rapidly. Boost-
ing is a general method for improving the accuracy of
any given learning algorithm. The active learning method
actively selects a subset of samples and trains the
classification system on the subset to achieve more
accurate prediction results. It is our hope that the
combination of boosting or active learning with the SVM
will achieve higher prediction accuracies. The second
need is to further filter the noise and outliers in the
prediction process. If the window length is not appropri-
ate, or the training samples are not independent and
identical, the noise-to-signal ratio will increase. The
central SVM may help to reduce noise and outliers.
Another idea is to use the wavelet transform method to
filter the outputs of the first and second layers. Wavelet

transforms filter signal noise and outliers; therefore,
they should improve the prediction accuracy. The third
aspect is to combine the information of other alignment
profiles with the PSI-BLAST profile. Cuff and Barton’s
work showed that combining PSI-BLAST with HM-
MER2 profiles improved the predictions compared to
using the PSI-BLAST profiles only. Therefore, practical
strategies may be developed to fuse different informa-
tion from different alignment profiles.
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