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Abstract

Deep reinforcement learning (DRL) has revolutionized learning and actuation in
applications such as game playing and robotic control. The cost of data collection,
i.e., generating transitions from agent-environment interactions, remains a major
challenge for wider DRL adoption in complex real-world problems. Following a
cloud-native paradigm to train DRL agents on a GPU cloud platform is a promising
solution. In this paper, we present a scalable and elastic library ElegantRL-podracer
for cloud-native deep reinforcement learning, which efficiently supports millions
of GPU cores to carry out massively parallel training at multiple levels. At a
high-level, ElegantRL-podracer employs a tournament-based ensemble scheme to
orchestrate the training process on hundreds or even thousands of GPUs, scheduling
the interactions between a leaderboard and a training pool with hundreds of pods.
At a low-level, each pod simulates agent-environment interactions in parallel by
fully utilizing nearly 7, 000 GPU CUDA cores in a single GPU. Our ElegantRL-
podracer library features high scalability, elasticity and accessibility by following
the development principles of containerization, microservices and MLOps. Us-
ing an NVIDIA DGX SuperPOD cloud, we conduct extensive experiments on
various tasks in locomotion and stock trading and show that ElegantRL-podracer
substantially outperforms RLlib. Our codes are available on GitHub Liu et al.
[2021].

1 Introduction

Deep reinforcement learning (DRL), which balances the exploration (of uncharted territory) and
exploitation (of current information), has revolutionized learning and actuation in applications such
as game playing Silver et al. [2017] and robotic control Zhang and Mo [2021]. DRL employs a
trial-and-error manner to generate transitions from agent-environment interactions, along with the
learning procedure. However, the cost of data collection remains a major challenge for wider DRL
adoption in real-world problems with complex and dynamic environments. Therefore, a compelling
solution is massively parallel training on hundreds or even thousands of GPUs, say millions of GPU
cores.

Existing DRL frameworks are not satisfactory with respect to scalability and accessibility. As shown
in Fig. 1, OpenAI Baselines Dhariwal et al. [2017], Stable Baselines 3 Raffin et al. [2019] and
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Figure 1: A comparison of different frameworks/libraries.

OpenAI Spinning Up OpenAI [2018] utilize a single GPU, while RLlib Liang et al. [2018] and rlpyt
Stooke and Abbeel [2019] can support multiple GPUs. However, there is no existing DRL framework
for a cloud with hundreds or even thousands of GPUs. We aim to fully utilize two core techonlogies:
1). GPUDirect technology system reference architecture [2020] that provides a path for data to bypass
CPUs and travel on “open highways” offered by GPUs, storage, and networking devices; and 2).
massively parallel simulations using thousands of GPU cores on a single GPU. On the other hand,
the above frameworks, except OpenAI Spinning Up serving an educational purpose, involve a steep
learning curve or a lack of customization flexibility, which results in low accessibility.

Scaling out the training process of DRL agents to hundreds or even thousands of GPUs is challenging
for researchers and practitioners. The cloud-native paradigm aims to scalably and elastically utilize
the cloud computing resources. Therefore, we believe it is practically promising to schedule the
training of DRL agents by following the cloud-native paradigm, such as employing standardized
software stack, e.g., Kubernetes (K8s) Bernstein [2014], and adopting core technologies including
containers, microservices, continuous integration (CI) and continuous delivery (CD) Balalaie et al.
[2016], Gannon et al. [2017].

In this paper, we present a scalable and elastic library ElegantRL-podracer for cloud-native deep
reinforcement learning, which efficiently utilizes millions of GPU cores to carry out massively
parallel training at multiple levels. At a high-level, ElegantRL-podracer employs a tournament-
based ensemble scheme to orchestrate the training process on hundreds or even thousands of GPUs,
scheduling the interactions between a leaderboard and a training pool with hundreds of pods. At a
low-level, each pod simulates agent-environment interactions in parallel by fully utilizing over 7, 000
GPU cores in a single GPU. Our ElegantRL-podracer library features high scalability, elasticity and
accessibility by following the development principles of containerization, microservices and MLOps.

Our main contributions are summarized as follows:

• We present a scalable and elastic open-source library for cloud-native deep reinforcement learning,
ElegantRL-podracer, that can utilize millions of GPU cores to train effective DRL agents for
complex real-world problems.

• To accelerate data collection for efficient exploration, we propose a tournament-based ensemble
training scheme and employ massive parallel simulations.

• ElegantRL-podracer follows a cloud-native paradigm by realizing the development principles of
containerization, microservices and MLOps (e.g., continuous integration and continuous delivery),
and achieves high accessibility.

• Using an NVIDIA DGX SuperPOD cloud system reference architecture [2020], we conduct
extensive experiments on various tasks in locomotion and stock trading and show that ElegantRL-
podracer substantially outperforms RLlib Liang et al. [2018].
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The remainder of this paper is organized as follows. Section 2 describes related works. Section 3
presents our design principles. Section 4 describes the ElegantRL-podracer library. In Section 5, we
present experimental results. We conclude this paper in Section 6.

2 Related Works

We review open-source DRL frameworks/libraries and environment simulation packages.

2.1 Deep Reinforcement Learning Framework/Libraries

Many open-source DRL frameworks/libraries have been developed in recent years with varied
capabilities. OpenAI Spinning Up OpenAI [2018] and Google Dopamine Castro et al. [2018] are
research frameworks for the fast prototyping of DRL algorithms. They both implement numerous
DRL algorithms with simple and pedagogical codes. Stable Baseline3 Raffin et al. [2019] is a stable
and efficient DRL library, introducing the parallelism of sampling through vectorized environment.
RLlib Liang et al. [2018] is a generic DRL library that derives its strength from Ray communication
protocols that enable scalable, distributed training. Podracer Hessel et al. [2021] from DeepMind
is closely related to our ElegantRL-podracer, which also focuses on the efficient usage of large
computing resources for training DRL agents. However, it is designed for Google’s tensor processing
units (TPUs) that are inaccessible to many researchers and practitioners.

2.2 Simulation Packages

Environment simulation is a critical component of DRL training, and lots of platforms that provide
various task simulations are emerging to close the simulation-to-reality gap. OpenAI Gym Brockman
et al. [2016] is a fundamental simulation toolkit for DRL research, which defines a standard interface
for follow-up works. It includes a collection of benchmark problems, e.g., classic control, Atari
games, and 2D and 3D robots. MuJoCo Todorov et al. [2012] and Isaac Gym Makoviychuk et al.
[2021] are two powerful platforms for robotic simulations. MuJoCo Todorov et al. [2012] is a
popular physics simulator that efficiently simulates joint contact models. The recently released
Isaac Gym Makoviychuk et al. [2021] is a high-performance simulation environment for physics.
It enables thousands of environments running in parallel on a single GPU. FinRL Liu et al. [2020],
Li et al. [2021] is a new finance-related DRL platform, which simulates various markets as training
environments that are built on historical data and live trading APIs.

3 Design Principles and Overview

We aim to develop a user-friendly open-source library that fully exploits cloud resources to train DRL
agents. The library emphasizes the following design principles:

• Scaling-out: scalability and elasticity.

• Efficiency: low communication overhead, massively parallel simulations and robustness of agents.

• Accessibility: lightweightness and customization.

For algorithm design, ElegantRL-podracer employs a tournament-based ensemble training scheme
to balance exploration and exploitation. In contrast to Evolutionary Strategies (ES) Salimans et al.
[2017] where a population of agents evolve over generations, our tournament-based ensemble training
scheme updates agents asynchronously in parallel, which decouples population evolution and single-
agent learning. As shown in Fig. 2, the key of the tournament-based ensemble training scheme is the
interaction between a leaderboard and a training pool. The training pool contains hundreds of agents
(pods) that 1) are trained in an asynchronous manner, and 2) can be initialized with different DRL
algorithms for an ensemble purpose. The leaderboard records the agents with high performance and
continually updates as more agents (pods) are trained.

As shown in Fig. 2, the tournament-based ensemble training scheme proceeds as follows:

1. An orchestrator instantiates a new agent (pod) and put it into a training pool.
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Figure 2: ElegantRL-podracer employs a tournament-based ensemble training, where a leaderboard
is updated by a training pool of pods.

2. A generator initializes an agent (pod) with networks and optimizers selected from a leaderboard.
The generator is a class of subordinate functions associated with the leaderboard, which has
different variations to support different evolution strategies.

3. An updater determines whether and where to insert an agent into the leaderboard according to its
performance, after a pod has been trained for a certain number of steps or certain amount of time.

For system design, ElegantRL-podracer follows the cloud-native paradigm. ElegantRL-podracer
achieves containerization by implementing the tournament-based ensemble training scheme as the
synergy of microservices. Such a paradigm allows a lightweight usage via simple APIs and a high
degree of customization through the flexible cooperation of microservices.

At a high-level, ElegantRL-podracer has the following capabilities to embody our design principles:

• Asynchronously distributed training is made possible through a training pool. ElegantRL-
podracer can scale out to hundreds or even thousands of computing nodes and elastically adjust the
number of agents according to the available computing resources.

• Tournament-based ensemble training is made possible through a leaderboard. Tournament-
based training scheme decouples the agent learning and population evolution to achieve low
communication overhead between pods. Ensembling many DRL algorithms increases efficiency by
exploiting agent robustness and diversity.

• Cloud-nativity is made possible with the containerization, microservices, and MLOps adher-
ence. MLOps achieves continuous training/integration/delivery (CT/CI/CD) by exploiting the
Kurbernetes (K8s) Bernstein [2014] software for automated cloud orchestration.

4 ElegantRL-Podracer: Scalable and Elastic Cloud-native Library

In this section, we propose a scalable and elastic cloud-native library, called ElegantRL-podracer.
We first describe its key components and then present its features.

4.1 Ensemble Training Using Microservices

As shown in Fig. 2, the ensemble training scheme exploits the synergy of the following microservices:
orchestrator, leaderboard (including updater and generator), and agents (pods) in the training pool,
where each microservice maps to a container.

Orchestrator: An orchestrator monitors the available computing resources and determines the
number of pods in the training pool. When K8s signals that the workload is light, the orchestrator
generates a set of new pods and insert them into the training pool. When a training objective (i.e.,
target rewards) is achieved, the orchestrator will terminate the training process.
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Figure 3: An agent (pod) is split into three types of microservices: worker, learner and evaluator.

Leaderboard: A leaderboard records a set of candidate agents with high performance, say cumula-
tive reward. An updater updates the candidate agents to the leaderboard, while a generator instantiates
a new pod by referring to candidate agents. The leaderboard may also track other information, such as
the covariance matrix, mean, variance, etc, which helps the generator to adaptively allocate computing
resources to highly potential candidate agents.

• Updater: An updater receives a trained agent (pod) and may insert its training files (including
actor network, critic network, optimizer parameters, replay buffer (for off-policy algorithms)) into
the leaderboard if it has high performance.

• Generator: A generator generates training files for a newly created pod. The generator may
perform a mutation of the candidate agents to increase the diversity.

4.2 Agent Learning Using Microservices

ElegantRL-podracer maps the training process of an agent to a pod, which is the smallest deployable
unit in K8s Bernstein [2014]. As shown in Fig. 3, ElegantRL-podracer separates an agent learning
into three microservices: worker, learner and evaluator.

Worker: A worker generates batches of transitions from interactions between the actor and the
batched environment. A batched environment consists of multiple independent sub-environments.
Each actor collects transitions from the sub-environments of the batched environment in parallel to
accelerate the data collection process.

Learner: A learner fetches a batch of transitions from the replay buffer to train the neural networks.
ElegantRL-podracer trains multiple learners in parallel and fuses the networks by aggregating
network parameters. In this way, ElegantRL-podracer experiments much less communication
overhead than distributed SGD in RLlib Liang et al. [2018].

Evaluator: An evaluator continuously evaluates a pod and records its performance and corresponding
networks during the training process. Commonly used performance metrics are the mean and variance
of the episodic reward. Note that the evaluator effectively mitigates the performance loss caused by
either overfitting or early stopping.

4.3 Features of ElegantRL-podracer

ElegantRL-podracer achieves several features that facilitate the implementation of a lightweight and
powerful training process on a GPU cloud.

Scalable parallelism: The multi-level parallelism of ElegantRL-podracer leads to high scalability.

• Agent parallelism: The agents in the training pool are parallel, thus can easily scale out to a
large number. The asynchronous training of parallel agents can also reduce the frequency of
agent-to-agent communication.

• Learner parallelism: An agent employs multiple learners to train the neural networks in parallel,
and then fuse the networks parameters to obtain a result agent, instead of using distributed SGD.
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Such a model fusion through network parameters involves a much lower frequency communication
as the fusion process only happens at the end of an epoch.

• Worker parallelism: An agent utilizes multiple rollout workers to sample transitions in parallel.

Elastic resource allocation: The elasticity is critical for cloud-level applications as it helps users
adapt to the changes in cloud resources and prevent over-provisioning and under-provisioning of
resources Mell and Grance [2011], Herbst et al. [2013]. ElegantRL-podracer can elastically allocate
the number of agents (pods) by employing an orchestrator to monitor the available computing
resources and the current training status.

Cloud-oriented optimizations: ElegantRL-podracer co-locates microservices on GPUs to accelerate
the parallel computation on both data collection and model training. For the data transfer and storage,
ElegantRL-podracer represents data as tensors to speedup the communication and allocates the shared
replay buffer on the contiguous memory of GPUs to increase the addressing speed.

Continuous training (CT) pipeline: Continuous training, which is a part of the MLOps practice,
seeks to automatically and continuously retrain the model to adapt to changes that might occur in
the data. ElegantRL-podracer performs the CT of a DRL agent by automating a lightweight DRL
training pipeline, which is composed of microservices. Users can conduct different experiments and
hyper-parameter search by modifying workers, learners and other microservices.

Continuous integration/delivery (CI/CD): ElegantRL-podracer enables a robust CI/CD for users to
explore new ideas by modifying existing microservices or build new microservices. The microservices
are loosely coupled, such that the change of one microservice will not break existing ones. Also
modularity allows for more comprehensive search over the experiment space, e.g., instead of designing
one experiment at a time, we could theoretically be able to test c1 × c2 × · × cn experiments in an
automated fashion, where n is the number of components for a DRL algorithm and ci is the number
of optional microservices for component i, i = 1, ..., n:

• Environment variation: ElegantRL-podracer supports any environment written in gym-style and
provides a class PreprocessVecEnv to convert a normal environment to a batch mode.

• Algorithm variation: ElegantRL-podracer can realize different DRL algorithms through combina-
tions of worker and learner variants. Currently, ElegantRL-podracer supports fine-tuned standard
DRL algorithms, including DQN-series Mnih et al. [2013], Van Hasselt et al. [2016], DDPG
Lillicrap et al. [2016], TD3 Fujimoto et al. [2018], SAC Haarnoja et al. [2018], and PPO Schulman
et al. [2017]. New algorithms may be used as long as they adhere to the agent interface.

• Evolution variation: ElegantRL-podracer allows users to customize the evaluator, updater and
generator in the leaderboard to decide how to evaluate, where to update, and what to generate.

5 Performance Evaluation

In the section, we describe the cloud platform in our experiments and the performance of ElegantRL-
podracer on various tasks from robotic control to stock trading task.

5.1 Experiment Platform: GPU Cloud

All experiments were executed using NVIDIA DGX-2 servers Choquette et al. [2021] in a DGX
SuperPOD cloud system reference architecture [2020], a cloud-native infrastructure. Each DGX-2
server contains 8 A100 GPUs and 320 GB GPU memory in total, and also has 128 CPU cores of
Dual AMD Rome 7742 running at 2.25GHz. Among the 8 A100 GPUs in one DGX-2 server, any two
A100 GPUs are connected with each other through 12 NVLinks, providing 600 Gbps of full-duplex
bandwidth Choquette et al. [2021].

5.2 Robotic Control Tasks

Ant and humanoid are two canonical robotic control tasks that simulate an ant and a humanoid,
respectively, where each task has both MuJoCo Todorov et al. [2012] version and Isaac Gym
Makoviychuk et al. [2021] version, as shown in Fig. 4. The ant task is a simple environment to
simulate due to its stability in the initial state, while the humanoid task is often used as a testbed for
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Tasks State space S Action space A Reward r(s, a, s′)

Ant Todorov et al.
[2012],
Makoviychuk et al.
[2021]

Body height and rotation 8 controllable joints Alive bonus
Velocity and angular velocity Running speed
Joint angles Standing and Heading
Forces, etc. Contact forces

Humanoid
Todorov et al.
[2012],
Makoviychuk et al.
[2021]

Body height and rotation 17 joints for MuJoCo Alive bonus
Velocity and angular velocity 21 joints for Isaac gym Running speed
Joint angles Standing and Heading
Forces, etc. Contact forces

Stock trading Liu
et al. [2020]

Balance, Shares Buy Change of account value
Close prices Sell
Technical indicators Hold

Table 1: The state space, action space and reward function of ant, humanoid and stock trading tasks.

locomotion learning. Even though the implementations of MuJoCo Todorov et al. [2012] and Isaac
Gym Makoviychuk et al. [2021] are slightly different, the objective of both is to have the agent move
forward as fast as possible. The state space, action space and reward function are given in Table 1.
We select the same tasks from the two platforms in order to show that 1) ElegantRL-podracer can
support different simulator platforms, and 2) the potential of massively parallel simulations in the
DRL training by comparing the CPU-based MuJoCo Todorov et al. [2012] with the GPU-based Isaac
Gym Makoviychuk et al. [2021].

Figure 4: Snapshots of robotic control environments. From left to right, the ant and humanoid tasks
from MuJoCo Todorov et al. [2012], and the ant and humanoid tasks from Isaac Gym Makoviychuk
et al. [2021].
Compared methods: On one DGX-2 server, we compare ElegantRL-podracer with RLlib Liang
et al. [2018], since both support multiple GPUs. ElegantRL-podracer used PPO Schulman et al.
[2017] from ElegantRL Liu et al. [2021], while in RLlib Liang et al. [2018] we used the Decentralized
Distributed Proximal Policy Optimization (DD-PPO) Wijmans et al. [2020] algorithm that scales well
to multiple GPUs. For fair comparison, we keep all adjustable parameters and computing resources
the same, such as the depth and width of neural networks, total training steps/time, number of workers,
and GPU and CPU resources. Specifically, we use a batch size of 1024, learning rate of 0.001, and a
replay buffer size of 4096 across tasks.

Performance metrics: We employ two different metrics to evaluate the agent’s performance:

• Episodic reward vs. training time (wall-clock time): we measure the episodic reward at different
training time, which can be affected by the convergence speed, communication overhead, scheduling
efficiency, etc.

• Episodic reward vs. training step: from the same testings, we also measure the episodic reward
at different training steps. This result can be used to investigate the massive parallel simulation
capability of GPUs, and also check the algorithm’s performance.

During the training process, we evaluate the agent 10 times to obtain 10 episodic rewards and report
the average episodic reward and standard deviation.

For the four tasks in Fig. 4, we terminate the training processes at 8, 000s (≈ 2.2 hours), 32, 000s
(≈ 8.9 hours), 25, 000s (≈ 6.9 hours) and 9, 000s (≈ 2.5 hours), respectively. As shown in Fig.
5, we can see that given the same training time, ElegantRL-podracer achieves substantially higher
episodic rewards than RLlib. For Isaac Gym in particular, the corresponding episodic rewards have
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Figure 5: Episodic reward vs. training time (wall-clock time) for the four tasks in Fig. 4.
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Figure 6: Episodic reward vs. training steps for the four tasks in Fig. 4.

been nearly doubled. In the task ant (Isaac Gym), RLlib needs approximately 7.0 hours to achieve a
reward 9, 000, while Elegant-podracer only needs approximately 1.4 hours to get the same reward,
which is 5× faster.

We run 2.0× 107 steps, 2.5× 107 steps, 4× 108 steps and 8× 108 steps, respectively. Take a closer
look at Fig. 6, we can see that ElegantRL-podracer achieves higher episodic rewards than RLlib in all
four tasks. A possible reason is the tournament-based ensemble training scheme guide a population
of agents update toward a direction with higher rewards.

5.3 Stock Trading Task

Finance is a promising and challenging real-world application of DRL algorithms. We apply
ElegantRL-podracer to a stock trading task as an example Liu et al. [2020], Li et al. [2021] to
show its potential in quantitative finance.

Stock trading task: we aim to train a DRL agent that decides where to trade, at what price and what
quantity in a stock market, thus the objective of the problem is to maximize the expected return and
minimize the risk. We model the stock trading task as a Markov Decision Process (MDP) as in FinRL
Liu et al. [2020], Li et al. [2021], where the state space, action space and reward function are given in
Table 1.

Data pre-processing: We select the NASDAQ-100 constituent stocks as our stock pool and use the
minute-level dataset for our experiment. For the data preparation, we download the raw data from the
Compustat database through the Wharton Research Data Services (WRDS) Service [2015]. Next,
we process it to an open-high-low-close-volume (OHLCV) format and extract technical indicators.
Finally, we follow a training-backtesting pipeline and split the dataset into two sets: the data from
01/01/2016 to 05/25/2020 for training, and the data from 05/26/2020 to 05/26/2021 for backtesting.

Performance metrics: We evaluate trading performance and training performance, respectively.
Five common metrics are used to quantify the trading performance:

• Cumulative return: subtracting the initial value from the final portfolio value, then dividing by
the initial value.

• Annual return and volatility: geometric average return in a yearly sense, and the deviation.

• Maximum drawdown: the maximum observed loss from a historical peak to a trough of a portfolio,
before a new peak is achieved. It is an indicator of downside risk over a time period.

• Sharpe ratio: the average return earned in excess of the risk-free rate per unit of volatility.

• Calmar ratio: the fund’s average compounded annual rate of return versus its maximum drawdown.

For the training performance, we use the metric, episodic reward vs training time (wall-clock time),
in Section 5.2. We record the required training time for reaching a specific cumulative return.
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Cumul.
return

Annual
return

Annual
volatility

Max.
drawdown

Sharpe
ratio

Calmar
ratio

ElegantRL-podracer 104.743% 103.591% 35.357% -17.187% 2.20 6.02
RLlib Liang et al. [2018] 86.274% 85.364% 34.319% -13.689% 1.98 6.24
Invesco QQQ ETF 46.586% 46.146% 23.39% -12.749% 1.75 3.62

Table 2: Stock trading performance on NASDAQ-100 constituent stocks with minute-level data.

We reserve a time period not used for training but only testing to evaluate generalization performance
for the stock trading problem. Since the agent cannot access the testing dataset during the training,
we store the model snapshots at different training times, say every 100 seconds. Later, we use each
snapshot model to perform inference on the testing dataset to obtain the cumulative return.

Compared methods: We compare ElegantRL-podracer with RLlib Liang et al. [2018] with the same
setup in Section 5.2. Invesco QQQ ETF is the benchmark to represent the market performance. There
are in total 80 A100 GPUs assigned to our usage.

From Fig. 7, all DRL agents can achieve a better performance than the market benchmark with
respect to the cumulative return, demonstrating the algorithm’s effectiveness. According to Table
2, we observe that ElegantRL-podracer has cumulative return 104.743%, annual return 103.591%,
and Sharpe ratio 2.20, which outperforms RLlib substantially. However, ElegantRL-podracer is
not as stable as RLlib during the backtesting period: it achieves an annual volatility 35.357%, max.
drawdown -17.187%, and Calmar ratio 6.02. There are two possible reasons to account for such an
instability: 1) the reward design in the stock trading environment is mainly related to the cumulative
return, thus leading the agent to take less care of the risk; 2) ElegantRL-podracer holds a large amount
of funds around 2021-03, as shown in Fig. 7, which naturally leads to a larger slip.

We compare the training performance on a varying number of GPUs, i.e., 8, 16, 32, and 80. We
measure the required training time to obtain two cumulative returns 1.7 and 1.8, respectively. In Fig.
7, both ElegantRL-podracer and RLlib Liang et al. [2018] requires less training time to achieve the
same cumulative return as the number of GPUs increases, which directly demonstrates the advantage
of cloud computing resources on the DRL training. For ElegantRL-podracer with 80 GPUs, it requires
(1900s, 2200s) to reach cumulative returns of 1.7 and 1.8. ElegantRL-podracer with 32 and 16 GPUs
need (2400s, 2800s) and (3400s, 4000s) to achieve the same cumulative returns. It demonstrates the
high scalability of ElegantRL-podracer and the effectiveness of our cloud-oriented optimizations. For
the experiments using RLlib Liang et al. [2018], increasing the number of GPUs does not lead to
much speed-up.

6 Discussion and Conclusion

In this paper, we have introduced ElegantRL-podracer, a scalable and elastic library for cloud-native
deep reinforcement learning. To efficiently utilize millions of GPU cores for DRL training, we
first propose a tournament-based ensemble training scheme to orchestrate the training process on
hundreds of GPUs, and then enable massively parallel simulation on thousands of GPU cores in a
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single GPU. Moreover, we follow the cloud-native paradigm to schedule the training of DRL agents
by adhering to containerization, microservices, and MLOps. Thus, ElegantRL-podracer realizes the
design principles in the respect of scaling-out, efficiency, and accessibility.

By presenting ElegantRL-podracer to the DRL community, we hope that ElegantRL-podracer can
help address the data collection bottleneck using the manycore GPU architecture and apply DRL
algorithms to complex real-world problems.
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