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GNBSL: A new integrative system to predict the

subcellular location for Gram-negative bacteria proteins
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This paper proposes a new integrative system (GNBSL – Gram-negative bacteria subcellular
localization) for subcellular localization specifized on the Gram-negative bacteria proteins. First,
the system generates a position-specific frequency matrix (PSFM) and a position-specific scoring
matrix (PSSM) for each protein sequence by searching the Swiss-Prot database. Then different
features are extracted by four modules from the PSFM and the PSSM. The features include
whole-sequence amino acid composition, N- and C-terminus amino acid composition, dipeptide
composition, and segment composition. Four probabilistic neural network (PNN) classifiers are
used to classify these modules. To further improve the performance, two modules trained by
support vector machine (SVM) are added in this system. One module extracts the residue-couple
distribution from the amino acid sequence and the other module applies a pairwise profile
alignment kernel to measure the local similarity between every two sequences. Finally, an addi-
tional SVM is used to fuse the outputs from the six modules. Test on a benchmark dataset shows
that the overall success rate of GNBSL is higher than those of PSORT-B, CELLO, and PSLpred. A
web server GNBSL can be visited from http://166.111.24.5/webtools/GNBSL/index.htm.
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1 Introduction

Subcellular location is a key functional characteristic of
potential gene products such as proteins. At present, a num-
ber of subcellular localization methods have been introduced.
These methods can be grouped into three categories. One

category is based on the existence of N-terminal sorting sig-
nals [1] such as signal peptides, mitochondrial targeting pep-
tides, and chloroplast transit peptides [2, 3]. Emanuelsson et
al. [4] proposes an integrative system based on individual
sorting signal predictions. This system can be used to find
cleavage sites in sorting signals and simulate the real sorting
process to a certain extent. Nevertheless, the prediction accu-
racy of the methods in this is highly dependent on the quality
of the N-terminal sequence assignment. The second category
studies those whole-sequence features such as amino acid
composition [5–10], pseudoamino acid composition [11–18,
19–25], dipeptide composition [26, 27], residue-couple com-
position [28, 29], Fourier transform feature [30], cellular
automata image [19], physical and chemical properties [31,
32], functional domain [21–23, 33–42], and n-Gram [43]. The
third category integrates different features to improve the
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performance and robustness. For example, PSORT-B [44]
integrated amino acid composition, similarity to proteins of
known localization, presence of a signal peptide, transmem-
brane alpha-helices and motifs corresponding to specific
localizations. Bhasin and coworkers [45–47] developed other
kinds of synthesis methods which infused amino acid com-
position, composition of physicochemical properties, dipep-
tide composition, residue couples, and EuPSI-BLAST.

This paper proposes a new integrative system, GNBSL
(Gram-negative Bacteria Subcellular Localization), to predict
the protein sucbellular location for Gram-negative bacteria,
which has been studied by Gardy et al. [44], Yu et al. [43], and
Bhasin et al. [47]. Different from PSORT-B [44], CELLO [43],
and PSIPRED [47], GNBSL extracts features from both
sequences and profiles. First, it generates a position-specific
frequency matrix (PSFM) and a position-specific scoring
matrix (PSSM) for each protein sequence by searching the
Swiss-Prot database. Then a number of features are extracted
from the PSFM and the PSSM. The features include whole-
sequence amino acid composition, N- and C-terminus amino
acid composition, dipeptide composition, and segment
composition. To further improve the performance, two other
modules are added in this system. One module extracts the
residue-couple features from the protein sequence; the other
module uses a local pairwise profile alignment kernel to
train a support vector machine (SVM) classifier. The prob-
abilistic neural network (PNN) and SVM are applied for
classification in different modules. Finally, an additional
SVM is employed to fuse the results from different modules
and output the final decision. We tested the performance of
GNBSL on a benchmark dataset and compared the results
from different modules and from existing methods. The
webserver can be visited at http://166.111.24.5/webtools/
GNBSL/index.htm.

2 Materials and methods

2.1 Datasets

In this work, Gardy et al. [44] Gram-negative bacteria protein
dataset was used as a benchmark dataset to test the perfor-
mance of GNBSL. This dataset includes 1302 proteins dis-
tributed in five subcellular locations: cytoplasm, inner-mem-
brane, outer-membrane, periplasm, and extracellular. This
dataset is convenient for comparing our work with existing
methods because it is also used by PSORT-B, CELLO, and
PSLpred.

2.2 Features and modules

In this paper, each protein sequence is used as a seed to
search the Swiss-Prot 46.0 protein database to find out the
homogenous sequences using PSI-BLAST program [48] and
generates two profiles: PSSM and PSFM. Both PSSM and
PSFM are matrices with 20 rows and L columns. The ele-

ments of PSSM profiles represent the log-likelihood of the
residue substitutions at all positions in the template (query
sequence) while PSFM contains both the sequence-weighted
observed frequency as well as the pseudocounts derived from
the substitution matrix. In the following step, we will con-
struct five modules to extract different features from PSSM
and PSFM and an additional module to extract residue-cou-
ple features from the amino acid sequence.

2.2.1 Module 1

The first module extracts amino acid composition from
PSSM. Denote as the PSSM matrix of the protein sequence,
where the elements of M = (ax,y)20xL as the PSSM matrix of
the protein sequence, where aij the alements of M and denote
V = (v1, v2,. . .,v20) as a 20-dimensional vector representing the
occurrence frequency from 20 types of amino acids. The
components of the vector, vi, can be calculated as follows:

vi ¼

PL

j¼1
aij

L
; i ¼ 1; 2; . . . ; 20 (1)

Obviously, vi is the mean value of the elements in the ith row
of M and V are the feature vectors representing the amino
acid composition of the entire PSSM.

2.2.2 Module 2

Unsually, the N- and the C-terminus of the protein contain
important signal peptides, which determine the subcellular
location of the protein. It is not a easy thing to directly iden-
tify these signal peptides from the sequence. Instead, this
module calculates the amino acid composition from the
whole PSSM, the N-terminus of PSSM and the C-terminus
of PSSM. For each part, a 20-D vector is extracted using the
same method as module 1, so the feature vector of module 2
has 60 dimensions.

2.2.3 Module 3

This module extracts dipeptide composition from PSFM. A
dipeptide comprises two consecutive residues. Obviously,
there are totally 20620 = 400 possible types of dipeptide.
Therefore, the feature vector in this module is set to 400
dimensions, corresponding to the 400 possible dipeptide
types. Denote by A1 the front residue of the dipeptide and by
A2 the back residue of the dipeptide, where both A1 and A2

represent to 20 different amino acid types (denoted by num-
bers 1 to 20). Denote N = (bx,y)20xL as the PSSM. Then the
occurrence frequency of the dipeptide A1A2 in the sequence
can be calculated as

f i;j ¼ PðA1 ¼ i;A2 ¼ jÞ ¼ 1
L� 1

XL�1

s¼1

bi;s�bj;s (2)

where i = 1,. . .20, j = 1,. . .,20; L is the length of the sequence.
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2.2.4 Module 4

This module assumes that different segments of a sequence
can provide complementary information. It divides the query
sequence into several fragments with equal length and cal-
culates the amino acid composition from the corresponding
fragments of the PSFM. Denote by Si the ith segment, i =
1,2,. . .,m, where m is the number of all fragments. The
amino acid composition (20-D vector) of Si (I = 1,2,. . .,m) is
calculated and all the 20-D vectors from different segments
are concatenated to the feature vector.

2.2.5 Module 5

In this module , a local profile alignment kernel is designed
to train an SVM classifier. The local profile alignment algo-
rithm [49] is an extension of the Smith–Waterman local
sequence alignment algorithm. Unlike the latter one, local
profile alignment attempts to find the local similarity be-
tween two profiles. It shares the same dynamic program-
ming process as the Smith–Waterman algorithm but uses a
different scoring method for aligned pairs. In Smith–Water-
man algorithm, the score of a pair of aligned amino acids is
defined by the substitution matrix, such as BLOSUM62,
PAM50, etc. In the local profile alignment algorithm, the
score should be calculated from two aligned 20-D vectors (the
column of PSFM, representing the distribution of amino
acids in a specific site of the sequence). Let us denote
M1 ¼ ðm1

i;jÞ20�L1
and M2 ¼ ðm2

i;jÞ20�L2
as two PSFMs to be

aligned, where the column number of the two matrices are L1

and L2, respectively. Denote Cu
1 ¼ ðm1

1;u;m
1
2;u; . . . ;m1

20;uÞ
T as

the column u of M1 and Cv
1 ¼ ðm2

1;v;m
2
2;v; . . . ;m2

20;vÞ
T as the

column v of M2, respectively. Then the pairwise profile
alignment score of Cu

1 and Cv
2 is defined as

eðCu
1 ;C

v
2Þ ¼

X20

h¼1

X20

k¼1

m1
h;u �m2

k;v � tðh; kÞ

where t(h, k) is the h, k element of a specific substitution
matrix. A dynamic programming algorithm is employed to
trace back the optimal local alignment. The local pairwise
profile alignment score of two PSFMs, r(M1, M2), is
defined as the sum of the scores from each pair of aligned
columns. Then a pairwise alignment kernel for SVM is
defined as

KðM1;M2Þ ¼ 1þ RðM1;M2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RðM1;M1Þ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RðM2;M2Þ

p

 !d

where d is a parameter. This kernel can be regarded as an
extension of the traditional polynomial kernel by replacing
the inner product with the local pairwise profile alignment
score. An SVM classifier is trained using the above kernel on
the training set to obtain the support vectors, their corre-

sponding weights a and the bias b. For a binary classification
problem, a protein sequence S can be predicted by the fol-
lowing decision formula

f ðMSÞ ¼
X

i2SV

yiaiKðMS;MiÞ þ b

where SV is the set of all support vectors, yi is the label of
the ith support vector and MS is the PSFM of S. For the
subcellular localization problem which is a multi-
classification problem, the one-vs-rest strategy is applied in
this work.

2.2.6 Module 6

This module applies the residue-couple model [28] to
extract the distribution of amino acid pairs from the
sequence. A term “Rank” is defined to describe the dis-
tance between two amino acids in a pair. Rank = 1 repre-
sents the pair is composed of two consecutive amino acids;
Rank = 2 represents the two amino acids in a pair are
separated by a residue between them; Rank = 3 represents
there are two residues inserted in the pair; and so on. For
each rank, a 400-D vector is calculated to record the dis-
tribution of the amino acid pairs in the sequence. The final
feature has 4006m dimensions, where m is the total
number of ranks.

2.2.7 SVM fusion

Among the six modules, module 6 extracts the residue-
couple features from the amino acid sequences; modules 1,
2, and 4 extract features from the PSSM while modules 3
and 5 extract features from the PSFM. Modules 1–4 are
trained with the PNN classifiers and other two modules are
trained with the SVM classifiers. The prediction results
from the six modules are fused by another SVM classifier.
Specifically, the output value from these modules are
encoded to six 5-D sparse binary vectors and are con-
catenated to a 30-D vector which is input to an SVM clas-
sifier for the final decision. The prediction process of
GNBSL is illustrated in Fig. 1.

2.3 Assessment of prediction results

The leave-one-out crossvalidation (jackknife) test, which is
regarded as more rigorous than the widely used k-fold
crossvalidation [11–13], is employed to evaluate the per-
formance of GNBSL. During the process of a leave-one-
out crossvalidation test, each protein is singled out in turn
for testing and the remaining proteins are merged for
training.

The overall accuracy, the accuracy in each location and
Matthew’s Correlation Coefficient (MCC) are used to assess
the prediction result. Please refer to the Supplementary
Materials for more details.
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Figure 1. The prediction process of GNBSL.

3 Results

3.1 Prediction results and comparison

The optimized parameters of each module are listed in
Table 1 and the results from the leave-one-out crossvalidation
test are listed in Table 2. Module 1 extracts amino acid com-
position from PSSM and reaches an overall accuracy of
88.5%. By combining with the amino acid compositions
from the N- and C-terminus of the PSSM, module 2 reaches
a better prediction accuracy of 90.7%. Module 3 extracts the
dipeptide compositions from the PSFM but the overall accu-
racy is almost the same as module 1, which only considers
the amino acid composition from PSSM. Module 4 extracts
amino acid composition from PSSM segments with equal
length (number of columns of PSSM) and reaches an overall
accuracy of 89.2%, slightly better than modules 1 and 3.
Instead of extracting the feature directly from the profiles,
module 5 generates the kernel matrix for SVM by calculating
the similarity score using the local profile alignment algo-
rithm. The prediction results show that this method per-
forms slightly worse than the other five modules. The last
module extracts residue-couple features from the amino acid
sequence and performs comparable to modules 1 and 3.
Table 2 shows that these modules have different advantages
on different subcellular locations. For example, module 2

Table 1. Optimized parameters for each module and for SVM
fusion

Profile
type

Classifier
type

Parameters

Module 1 PSSM PNN s = 0.035
Module 2 PSSM PNN s = 0.057 LN = 50 LC = 50
Module 3 PSFM PNN s = 0.08
Module 4 PSSM PNN s = 0.055 Nsplit = 2
Module 5 PSFM SVM g = 17 C = 0.0006
Module 6 2 SVM g = 7 C = 100 Nrank = 10
Fusion 2 SVM g = 0.08 C = 50

s is the parameter of PNN, g is the parameter of RBF kernel for
SVM, C is the regularization parameter of soft-margin SVM (for-
mula 5), LN and LC are the number of N- and C-terminal residues
extracted by module 2, respectively, Nsplit is the number of frag-
ments in module 4, and Nrank is the rank number in module 6.
Please refer to the Supplementary Materials for more details.

performs best on cytoplasm and module 3 performs best on
the outer-membrane. To utilize the complementary infor-
mation extracted by these modules, an additional SVM is
used to fuse the output from the six modules. The overall
accuracy of the SVM fusion reaches 93.4%, which is signifi-
cantly better than that of each individual module.

The prediction result of GNBSL (SVM fusion) is com-
pared with that of PSORT-B [44], CELLO [44], and PSLpred
[47] on the same dataset. The characteristic of GNBSL is that
its modules (modules 1–5) extract information from profiles
rather than from an amino acid sequence. The comparison
results of the four methods are listed in Table 3. The overall
accuracy of GNBSL reaches 93.4%, which is 2.2, 4.5, and
18.6% higher than PSLpred, CELLO, and PSORT-B, respec-
tively. In addition, GNBSL performs better that PSLPred on
the cytoplasm and inner-membrane and performs compar-
ably on the periplasm, outer-membrane and extracellular.

3.2 Negative control test

We did a negative control test for each module. First, the
sequence of each test protein is shuffled and the PSSM and
the PSFM of the shuffled sequence are regenerated by PSI-
BLAST. The extracted feature vector (modules 1–4 and 6) or
kernel value (module 5) is classified by the pretrained classi-
fiers. The leave-one-out crossvalidation is also used to do the
negative control test by replacing the samples in the old test
set by the new shuffled samples. The test results for the six
modules are listed in Table 4. The prediction results of each
modulesignificantly fall when test proteins are shuffled.

4 Description of webserver

All the modules introduced in this paper have been imple-
mented in a webserver named “GNBSL” and can be accessed
from http://166.111.24.5/webtools/GNBSL/index.htm. All
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Figure 2. A snapshot of the webpage of GNBSL for sequence submission.

Table 2. The performance of six modules and SVM fusion of GNBSL on the Gram-negtative bacteria protein dataset

Module 1 Module 2 Module 3 Module 4 Module 5 Module 6 SVMFusion

AC MC AC MC AC MC AC MC AC MC AC MC AC MC

Cyt 83.5 0.82 94.8 0.95 84.7 0.81 85.9 0.84 75.8 0.78 91.0 0.84 95.2 0.90
Inn 89.2 0.89 88.4 0.88 88.1 0.88 89.6 0.91 90.3 0.83 88.8 0.91 92.3 0.94
Per 85.3 0.78 88.9 0.89 82.4 0.77 89.8 0.81 77.1 0.81 85.3 0.78 91.0 0.87
Out 93.5 0.93 95.5 0.96 96.6 0.93 92.6 0.92 97.7 0.89 93.5 0.91 97.2 0.95
Ext 88.4 0.84 83.2 0.83 86.8 0.87 85.8 0.84 88.4 0.86 80.0 0.84 87.9 0.90
OA 88.5 2 90.7 2 88.6 2 89.2 2 86.8 2 88.5 2 93.4 2

Cyt: cytoplasm; Inn: inner-membrane; Per: periplasmic; Out: outer-membrane; Ext: extracellular; OA: overall accuracy; AC: accuracy in a
certain location; MC: MCC in a certain location. The value of AC is represented in percentage.

Table 3. Compare the performance of GNBSL with other three
subcellular localization methods on the Gram-negative
bacteria protein dataset

PSORT-B CELLO PSLpred GNBSL

AC AC MCC AC MCC AC MCC

Cyto 69.4 90.7 0.85 90.7 0.86 95.2 0.90
Inn 70.0 78.9 0.82 86.8 0.88 92.3 0.94
Per 78.7 88.4 0.92 90.3 0.90 91.0 0.87
Outer 90.3 94.6 0.90 95.2 0.95 97.2 0.95
Exta 57.6 86.9 0.80 90.6 0.84 87.9 0.90
OA 74.8 88.9 2 91.2 0.89 93.4 2

Notations: See the legend to Table 2.

the CGI scripts are written in matlab and run on a
matlab webserver program. The PSI-BLAST program is
downloaded from http://www.ncbi.nlm.hig.gov/blast and
is called by a matlab script. The SVM is implemented by
a matlab machine learning toolbox SPIDER downloaded
from http://www.kyb.tuebingen.mpg.de/bs/people/spider/.
The user can submit their sequence in FASTA format
and the prediction results can be retrieved by two ways:
accepting an e-mail automatically sent by the server or
downloading the results from our FTP sites:
ftp://166.111.24.5/ (the username, password, and port
will be provided on the webpage after you submit your
sequences).
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Table 4. The prediction results from the negative control test for the six modules

Module 1 Module 2 Module 3 Module 4 Module 5 Module 6

AC MC AC MC AC MC AC MC AC MC AC MC

Cyt 51.2 0.53 68.6 0.39 69.8 0.61 51.2 0.48 38.3 0.45 85.5 0.75
Inn 76.9 0.72 65.3 0.66 76.9 0.72 78.0 0.78 84.0 0.51 85.8 0.84
Per 74.6 0.47 37.3 0.27 66.0 0.58 79.1 0.45 19.3 0.36 71.7 0.62
Out 29.0 0.39 29.3 0.32 77.6 0.72 15.6 0.25 66.5 0.52 73.9 0.69
Ext 65.8 0.44 40.5 0.28 65.8 0.62 64.2 0.44 53.2 0.41 56.8 0.56
OA 57.0 2 47.3 2 72.0 2 54.2 2 53.9 2 75.7 2

Notations: See the legend to Table 2.

5 Conclusions

This paper introduces an integrative method for protein
subcellular localizations for Gram-negative bacteria. Five
modules are constructed by extracting information from the
profiles and an additional module is used to extract residue-
couple distributions from the amino acid sequence. The
outputs of the six modules are fused by an SVM classifier for
the final decision. On a benchmark dataset, the performance
of GNBSL has been demonstrated to be comparable or better
than the existing methods. A web service is also available
from http://166.111.24.5/webtools/GNBSL/index.htm.
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Human Liver Proteome Project (2004BA711A21) and The
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