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Graphical Models for Ordinal Data

Jian Guo*, Elizaveta Levina†, George Michailidis†, and Ji Zhu†

*Department of Biostatistics, Harvard University

†Department of Statistics, University of Michigan, Ann Arbor

Abstract

A graphical model for ordinal variables is considered, where it is assumed that the data are 

generated by discretizing the marginal distributions of a latent multivariate Gaussian distribution. 

The relationships between these ordinal variables are then described by the underlying Gaussian 

graphical model and can be inferred by estimating the corresponding concentration matrix. Direct 

estimation of the model is computationally expensive, but an approximate EM-like algorithm is 

developed to provide an accurate estimate of the parameters at a fraction of the computational 

cost. Numerical evidence based on simulation studies shows the strong performance of the 

algorithm, which is also illustrated on data sets on movie ratings and an educational survey.

Keywords

Graphical model; lasso; ordinal variable; probit model

1 Introduction

Graphical models have been successful in identifying directed and undirected structures 

from high dimensional data. In a graphical model, the nodes of the network correspond to 

random variables and the edges represent their corresponding associations (Lauritzen, 1996). 

Two canonical classes of graphical models are the Gaussian one, where the dependence 

structure is fully specified by the inverse covariance matrix and the Markov one, where the 

dependence structure is captured by the interaction effects in an exponential family model. 

In the latter model, each interaction effect can be interpreted as the conditional log-odds-

ratio of the two associated variables given all other variables. In both models, a zero element 

in the inverse covariance matrix or a zero interaction effect determines a conditionally 

independent relationship between the corresponding nodes in the network.

Estimation of such models from high dimensional data under a sparsity assumption has 

attracted a lot of interest in the statistics and machine learning literature, including 

regularized likelihood and regression methods, for example, see Yuan and Lin (2007); 

Banerjee et al. (2008); Friedman et al. (2008); Rothman et al. (2008); Fan et al. (2009); 

Meinshausen and Buhlmann (2006); Rocha et al. (2008); Peng et al. (2009) and references 

therein. For a Markov network, direct estimation of a regularized likelihood is infeasible due 

to the intractable partition function in the likelihood. Instead, existing methods in the 

literature employ variants of approximation estimation methods. Examples include the 

surrogate likelihood methods (Banerjee et al., 2008; Kolar and Xing, 2008) and the pseudo-
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likelihood methods (Höefling and Tibshirani, 2009; Ravikumar et al., 2010; Guo et al., 

2010).

In many applications involving categorical data, an ordering of the categories can be safely 

assumed. For example, in marketing studies consumers rate their preferences for a wide 

range of products. Similarly, computer recommender systems utilize customer ratings to 

make purchase recommendations to new customers; this constitutes a key aspect of the 

business model behind Netflix, Amazon, Tripadvisor, etc (Koren et al., 2009).

Ordinal variables are also an integral part of survey data, where respondents rate items or 

express level of agreement/disagreement on issues/topics under consideration. Such 

responses correspond to Likert items and a popular model to analyze such data is the 

polychotomous Rasch model (von Davier and Carstensen, 2010) that obtains interval level 

estimates on a continuum, an idea that we explore in this work as well. Ordinal response 

variables in regression analysis give rise to variants of the classical linear model, including 

the proportional odds model (Walker and Duncan, 1967; McCullagh, 1980), the partial 

proportional odds model (Peterson, 1990), the probit model (Bliss, 1935; Albert and Chib, 

1993; Chib and Greenberg, 1998), etc. A comprehensive review of ordinal regression is 

given in McCullagh and Nelder (1989) and O'Connell (2005).

In this paper, we introduce a graphical model for ordinal variables. It is based on the 

assumption that the ordinal scales are generated by discretizing the marginal distributions of 

a latent multivariate Gaussian distribution and the dependence relationships of these ordinal 

variables are induced by the underlying Gaussian graphical model. In this context, an EM-

like algorithm is appropriate for estimating the underlying latent network, which presents a 

number of technical challenges that have to be addressed for successfully pursuing this 

strategy.

Our work is related to Albert and Chib (1993), Chib and Greenberg (1998) and Stern et al. 

(2009) in the sense that they are all built on the probit model and/or the EM algorithmic 

framework. Albert and Chib (1993) proposed an MCMC algorithm for the probit-model-

based univariate ordinal regression problem, where an ordinal response is fitted on a number 

of covariates, while Chib and Greenberg (1998) can be considered an extension to the 

multivariate case. Stern et al. (2009) aims in building an online recommender system via 

collaborative filtering and applied the discretization/thresholding idea in the probit model to 

the ordinal matrix factorization problem. Our model, on the other hand, has a completely 

different motivation from these works. Our objective is explore associations between a set of 

ordinal variables, rather than prediction and/or regression problems. Nevertheless, the EM 

framework employed is related to that in Chib and Greenberg (1998), but due to the 

different goal, the form of the likelihood function of the proposed model is different from 

that of the ordinal regression problem. Further, as seen in Section 2, we do not use any 

MCMC or Gibbs sampling scheme.

The remainder of the paper is organized as follows. Section 2 presents the probit graphical 

model and discusses algorithmic and model selection issues. Section 3 evaluates the 

performance of the proposed method on several synthetic examples and Section 4 applies 
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the model to two data examples, one on movie ratings and the other on a national 

educational longitudinal survey study.

2 Methodology

2.1 The probit graphical model

Suppose we have p ordinal random variables X1, …, Xp, where Xj ∈ {1, 2, …, Kj} for some 

integer Kj, which is the number of the ordinal levels in variable j. In the proposed probit 

graphical model, we assume that there exist p latent random variables Z1, … , Zp from a 

joint Gaussian distribution with mean zero and covariance matrix Σ = (σj,j′)p×p. Without loss 

of generality, we further assume that Zj's have unit variances (σj,j = 1 for j = 1, … , p), i.e., 

the Zj's marginally follow standard Gaussian distributions. Each observed variable Xj is 

discretized from its latent counterpart Zj. Specifically, for the j-th variable (j = 1, … , p), we 

assume that (−∞,+∞) is split into Kj disjointed intervals by a set of thresholds 

, such that Xj = k if and only if Zj falls in the 

interval . Thus,

(1)

where Φ(·) denotes the cumulative density function of the standard normal distribution.

Let , , X = (X1, …, Xp), Z = (Z1, 

… , Zp). Let C(X,Θ) be the hyper-cube defined by . Then 

we can write the joint density function of (X,Z) as:

(2)

where I(·) is the indicator function. Thus, the marginal probability density function of the 

observed X is given by

(3)

We refer to (1)–(3) as the probit graphical model, which is motivated by the probit 

regression model (Bliss, 1935; Albert and Chib, 1993; Chib and Greenberg, 1998) and the 

polychotomous Rasch model (von Davier and Carstensen, 2010).

To fit the probit graphical model, we propose maximizing an l1-regularized log-likelihood of 

the observed data. Let xi,j and zi,j be the i-th realizations of the observed variable Xj and the 

latent variable Zj, respectively, with xi = (xi,1, … , xi,p) and zi = (zi,1, … , zi,p). The criterion 

is given by
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(4)

The tuning parameter λ in (4) controls the degree of sparsity in the underlying network. 

When λ is large enough, some ωj,j′'s can be shrunken to zero, resulting in the removal of the 

corresponding links in the underlying network. Numerically, it is difficult to maximize 

criterion (4) directly, because of the integral in (3). Next, we introduce an EM-type 

algorithm to maximize (4) in an iterative manner.

2.2 An algorithm for fitting the probit graphical model

Criterion (4) depends on the parameters Θ and Ω and the latent variable Z. The former has a 

closed-form estimator. Specifically, for each j = 1, … , p, we set

(5)

where Φ is the cumulative distribution function of the standard normal. One can show that 

consistently estimates Θ. The estimation of Ω, on the other hand, is nontrivial due to the 

multiple integrals in (3). To address this problem, we apply the EM algorithm to optimizing 

(4), where the latent variables zi,j's (i = 1, … , n; j = 1, … , p) are treated as “missing data” 

and are imputed in the E-step, and the parameter Ω is estimated in the M-step.

E-step. Suppose  is the updated estimate of Ω from the M-step. Then the E-step computes 

the conditional expectation of the joint log-likelihood given the estimates  and , which is 

usually called the Q-function in the literature:

(6)

Here S is a p×p matrix whose (j, j′)-th element is 

. The distribution of zi conditional on 

xi is equal to that of zi conditional on zi ∈ C(xi, Θ), which follows a truncated multivariate 

Gaussian distribution on the hyper-cube C(xi, Θ). Therefore,  is the 

second moment of a truncated multivariate Gaussian distribution and it can be directly 

estimated using the algorithms proposed by Tallis (1961), Lee (1979), Leppard and Tallis 

(1989) and Manjunath and Wilhelm (2012). Nevertheless, the computational cost of these 

direct estimation algorithms is extremely high and thus not suitable for even moderate size 

problems. An alternative approach is based on the Markov-chain-Monte-Carlo (MCMC) 

method. Specifically, we randomly generate a sequence of samples from the conditional 

distribution  using a Gibbs sampler from a multivariate truncated normal 

distribution (Kotecha and Djuric, 1999) and then  is estimated by the 
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empirical conditional second moment from these samples. Although the MCMC approach is 

faster than the direct estimation method, it is still not efficient for large scale problems. To 

address this computational issue, we develop an efficient approximate estimation algorithm, 

discussed in Section 2.3.

M-step. The M-step updates Ω by maximizing the l1-regularized Q-function (up to a 

constant and a factor):

(7)

The optimization problem (7) can be solved efficiently by existing algorithms such as the 

graphical lasso (Friedman et al., 2008) and SPICE (Rothman et al., 2008). However, the 

estimated covariance matrix, , does not necessarily have unit diagonal elements 

postulated by the probit graphical model. Therefore, we post-process  by scaling it to a 

unit-diagonal matrix  and update , which will be used in the E-step of the next 

iteration.

2.3 Approximating the conditional expectation

Note that when j = j′, the corresponding conditional expectation is the conditional second 

moment ; when j ≠ j′, we use a mean field theory approach (Peterson and 

Anderson, 1987) to approximate it as 

. Note that the approximation 

decouples the “interaction” between the two variables zi,j and zi,j′. Therefore, one would 

expect that the approximation performs well when zj and zj′ are close to independence given 

all other random variables, which often holds when Ω or the corresponding graph is sparse. 

With this approximation, it is sufficient to estimate the first moment  and 

the second moment . In general, the latent variable zi,j not only depends on 

xi,j, but also on all other observed variables xi,−j = (xi,1, …, xi,j−1, xi,j+1, …, xi,p). We can 

write the first and second conditional moments as

(8)

(9)

where zi,−j = (zi,1, …, zi,j−1, zi,j+1, …, zi,p). The inner expectations in (8) and (9) are 

relatively straightforward to compute: given the parameter estimate , zi,1, …, zi,p jointly 

follow a multivariate Gaussian distribution with mean zero and covariance matrix . 

A property of the Gaussian distribution is that the conditional distribution of zi,j given zi,−j is 

also Gaussian, with mean  and variance 

. Moreover, given the observed data xi,j, conditioning zi,j on 
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zi,−j, xi,j in (8) is equivalent to conditioning on , which follows a 

truncated Gaussian distribution on the interval . The following lemma gives the 

closed-form expressions for the first and second moments of the truncated Gaussian 

distribution.

Lemma 1 Suppose that a random variable Y follows the Gaussian distribution with mean μ0 

and variance . For any constants t1 < t2, let ξ1 = (t1 – μ0)/σ0 and ξ2 = (t2 – μ0)/σ0. Then the 

first and second moments of Y truncated to the interval (t1, t2) are given by

(10)

(11)

where ϕ(·) is the probability density function of the standard normal. For more properties of 

the truncated Gaussian distribution, see Johnson et al. (1994).

Letting  and applying Lemma 1 to the conditional expectations in 

(8) and (9), we obtain

(12)

(13)

where

Next, we plug equations (12) and (13) into (8) and (9), respectively. Since , ai,j and bi,j 

depend on the latent variables zi,−j's, the outer expectations in (8) and (9) depend on 

, ,  and . Note that 

 is a linear function of zi,−j and  is a constant irrelevant to the latent data. For each i = 

1, …, n and j = 1, …, p, the conditional expectation of  is

(14)

However, ai,j and bi,j are nonlinear functions of  and thus of zi,−j. Using the first order 

delta method, we approximate their conditional expectations by
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(15)

(16)

where . Finally, we approximate 

. Therefore (8) and (9) can be 

approximated by

(17)

(18)

Equations (17) and (18) establish the recursive relationships among the elements in 

 and , respectively, giving a natural iterative procedure for 

estimating these quantities. Algorithm 1 summarizes the main steps of the proposed 

combined estimation procedure outlined in Sections 2.2 and 2.3.

Algorithm 1 The EM Algorithm for estimating Ω

1:

Initialize ,  and 

 for i = 1, …, n and j,j′ = 1, …,p;

2:
Initialize sj,j′ for 1 ≤ j,j′ ≤ p using the Line 1 above, and then estimate  by maximizing criterion (7);
{Start outer loop}

3: repeat

4:  E-step: estimate S in (6);
{Start inner loop}

5:   repeat

6:   for i = 1 to n do

7:    if j = j′ then

8:

    Update  using RHS of equation (18) for j = 1, …, p;

9:       else
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10:

    Update  using RHS of equation (17) for j = 1, …, p and then set 

 for 1 ≤ j ≠ j′ ≤ p;

11:       end if

12:     end for

13:

  Update  for 1 ≤ j,j′ ≤ p;

14:  until The inner loop converges;

15:
 M-step: update  by maximizing criterion (7);

16: until The outer loop converges.

In Algorithm 1, Lines 1–2 initialize the conditional expectation E(zi,j | xi) and the parameter 

estimate . Lines 3–16 establish the outer loop which iteratively computes the E-step and 

the M-step. In the E-step, Lines 5–14 consist of the inner loop which recursively estimates 

the first and second moments of zi,j conditional on xi. The complexity of the inner loop is 

O(np2), which is the same as that of the graphical lasso algorithm in the M-step. Therefore, 

the overall complexity of Algorithm 1 is O(Mnp2), where M is the number of EM steps 

required for convergence. In our numerical studies, we found M is often smaller than 50. For 

a more concrete idea about the computational cost, we note that on a linux server with four 

1G Dual-Core AMD Opteron Processors and 4GB RAM, it takes about 2 minutes for the 

proposed algorithm to complete the fitting on a simulated dataset in Section 3 with n = 200 

observations and p = 50 variables.

2.4 Model selection

In the probit graphical model, the tuning parameter λ controls the sparsity of the resulting 

estimator and it can be selected using cross-validation. Specifically, we randomly split the 

observed data X into D subsets of similar sizes and denote the index set of the observations 

in the d-th subset by . For any pre-specified λ, we denote by  the 

maximizer of the criterion (4) estimated by Algorithm 1 using all observations except those 

in . We also denote by  and  the analogs of  S in Section 2.2, but 

computed from the data in  and , respectively. In particular, an element of S[d] is 

defined as , for 1 ≤ j, j′ ≤ p, where  is 

the cardinality of . Given  and , S[d] can be estimated by the algorithm 

introduced in Section 2.3, i.e., the inner loop of Algorithm 1. Thus, the optimal tuning 

parameter can be selected by maximizing the following criterion:

(19)
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We note that we have also considered the AIC and BIC type criteria for choosing the tuning 

parameter λ. We found that AIC performs the worst among the three due to estimating many 

zero parameters as non-zeros (Lian, 2011); BIC and cross-validation tend to have similar 

performances in estimating zero parameters as zeros, but BIC also tends to estimate the non-

zero parameters as zeros. Therefore, we choose to use cross-validation. Due to space 

limitation, the results are not included.

3 Numerical Examples

In this section, we use two sets of simulated experiments to illustrate the performance of the 

probit graphical model. The first set aims at comparing the computational cost of the three 

methods that estimate the Q-function in the E-step; namely the direct computation, the 

MCMC sampling and the approximation algorithm. The second set compares the 

performance of the probit graphical model using the approximation algorithm to that of the 

Gaussian graphical model.

3.1 Computational cost and performance

Note that the computational costs of the direct estimation and the MCMC sampling are 

extremely high when p is even of moderate size. Therefore, in this experiment, we simulate 

a low-dimensional data set with p = 5 variables and n = 10 observations. Specifically, we 

define the underlying inverse covariance matrix Ω as a tri-diagonal matrix with 1's on the 

main diagonal and 0.5 on the first sub-diagonal. The corresponding covariance matrix is 

then scaled so that all the variances are equal to 1. Then, for i = 1, …, n, we generate the 

latent data zi = (zi,1, …, zi,p) from N(0, Σ) and discretize them as follows: for each j = 1, …, 

p, set

(20)

and  (i = 1, …, n; j, …, p), i.e., the value of xi,j is k if it locates in 

interval .

The probit graphical model is applied using four estimation methods in the E-step, namely 

the direct computation, a standard Gibbs sampling, the Gibbs sampler proposed by Pakman 

and Paninski (2012) and the approximation algorithm proposed in this manuscript. The 

procedure is repeated for 20 times, and the computational costs are shown in Table 1. We 

can see that the median CPU time of the approximation algorithm is only about 1/1,000 of 

that of the Gibbs sampling and about 1/80,000 of that of the direct computation. To further 

compare the estimation accuracy of these methods, we use the Frobenius and entropy loss 

metrics that are defined next:
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(21)

(22)

where  denotes the estimated network.

The performance of the three estimation methods is depicted in Figure 1. It can be seen that 

the direct computation and Gibbs sampling methods are fairly similar in performance (The 

result using the R package “tmg” is almost identical to that of the standard Gibbs sampling 

and not shown); this is expected since they can all be considered “exact” approaches. In 

terms of the Frobenius and entropy losses, the approximation algorithm lags slightly behind 

its competitors when the tuning parameter λ is relatively small, whereas for larger λ it 

outperforms them. This is due to the fact that in this simulation study, the true Ω is very 

sparse and the mean field approximation also happens to implicitly enforce a conditional 

independence structure on the S matrix. These findings suggest that the proposed 

approximation algorithm achieves its orders of magnitude computational savings over the 

competitors with minimal degradation in performance.

3.2 Experiments with different types of graphs

In this section, we evaluate the performance of the proposed method by simulation studies. 

These examples simulate four types of network structures: a scale-free graph, a hub graph, a 

nearest-neighbor graph and a block graph. Each network consists of p = 50 nodes. The 

details of these networks are described as follows:

Example 1 Scale-free graph. A scale-free graph has a power-law degree distribution 

and can be simulated by the Barabasi-Albert algorithm (Barabasi and 

Albert, 1999). A realization of a scale-free network is depicted in Figure 2 

(A).

Example 2 Hub graph. A hub graph consists of a few high-degree nodes (hubs) and a 

large amount of low-degree nodes. In this example, we follow the 

simulation setting in Peng et al. (2009) and generate a hub graph by 

inserting a few hub nodes into a very sparse graph. Specifically, the graph 

consists of three hubs with degrees around eight, and the other 47 nodes 

with degrees at most three. An example of the hub graph is shown in Figure 

2 (B).

Example 3 Nearest-neighbor graph. To generate nearest neighbor graphs, we slightly 

modify the data generating mechanism described in Li and Gui (2006). 

Specifically, we generate p points randomly on a unit square, calculate all 

p(p−1)/2 pairwise distances, and find the m nearest neighbors of each point 

in terms of these distances. The nearest neighbor network is obtained by 
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linking any two points that are m-nearest neighbors of each other. The 

integer m controls the degree of sparsity of the network and the value m = 5 

was chosen in the simulation study. Figure 2 (C) exhibits one realization of 

the nearest-neighbor network.

Example 4 Block graph. In this setting, we generate a graph using a random adjacency 

matrix generated from the stochastic block model. Specifically, for nodes 

1–20 the probability of being linked is 0.2, for nodes 21–30 the probability 

of being linked is 0.5, whereas for all other pairs of nodes the probability of 

having a link is 0.02. Figure 2 (D) illustrates such a random graph.

The ordinal data are generated as follows. First, we generate the inverse covariance matrix Ω 

of the latent multivariate Gaussian distribution. Specifically, each off-diagonal element ωj,j′ 

is drawn uniformly from [−1, −0.5] ⋃ [0.5, 1] if nodes j and j′ are linked by an edge, 

otherwise ωj,j′ = 0. Further, the diagonal elements were all set to be 2 to ensure positive 

definiteness, and the corresponding covariance matrix is scaled so that all the variances are 

equal to 1. Second, we generate the latent data zi = (zi,1, …, zi,p) as an i.i.d. sample from N(0, 

Σ). Finally, the continuous latent data zi's are discretized into ordinal scale with three levels 

by thresholding. Specifically, for each j = 1, …, p, we set

(23)

and set  (i = 1, …, n; j = 1, …, p). For each example, we 

considered different sample sizes, with n=50, 100, 200 and 500.

We compare the proposed probit graphical model with two other methods. One consists of 

direct application of the graphical lasso to the ordinal data X, ignoring their discrete nature. 

The second uses the graphical lasso on the latent continuous data Z. We refer to the first one 

as the naive method and the second one as an oracle method because it represents an ideal 

situation where Z is exactly recovered. Of course, the latter never occurs with real data, but 

serves as a benchmark for comparison purposes. The receiver operating characteristic curve 

(ROC) was used to evaluate the accuracy of network structure estimation. The ROC curve 

plots the sensitivity (the proportion of correctly detected links) against the false positive rate 

(the proportion of mis-identified zeros) over a range of values of the tuning parameter λ. The 

sensitivity and the false positive rate are defined as follows:

(24)
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(25)

where  is an indicator function whose value is one if the statement in the parenthesis is 

true, and is zero if it is false. In addition, the Frobenius loss and the entropy loss defined in 

(21) were used to evaluate the performance of parameter estimation.

Figure 3 shows the ROC curves for all simulated examples. The curves are averaged over 50 

replications. The oracle method provides a benchmark curve for each setting (blue dotted 

line in each panel). We can see that when the sample size is relatively small (n=50, 100 or 

200), the probit model (dark solid line) dominates the naive method (red dashed line). When 

the sample size gets larger, the two methods exhibit similar performance.

Table 2 summarizes the parameter estimation measured by the Frobenius loss and the 

entropy loss. The results were again averaged over 50 repetitions and the tuning parameter λ 

was selected using the cross-validation introduced in Section 2.4. The oracle method 

evidently performs the best, as it should. Comparing the two methods based on the observed 

data X, we can see that the Frobenius losses from the probit model are consistently lower 

than those from the naive method. The advantage is more significant when the sample size is 

moderate (n=100 or 200). In terms of the entropy loss, we can see that the probit model 

outperforms the naive method for relatively large sample sizes, such as n=200 and 500.

4 Data Examples

4.1 Application to movie rating records

In this section, we apply the probit graphical model to Movielens, a data set containing 

rating scores for 1682 movies by 943 users. The rating scores have five levels, where 1 

corresponds to strong dissatisfaction and 5 to strong satisfaction. More than 90% of the 

entries are missing in the full data matrix; for this reason, we consider a subset of the data 

containing 193 users and 32 movies, with 15% missing values. The missing values were 

imputed by the median of the observed movie ratings.

The estimated network for these 32 movies is shown in Figure 4. We can see that the 

estimated network consists of a large connected community as well as a few isolated nodes. 

The large community mainly consists of mass marketed commercial movies, dominated by 

science fiction and action films. These movies are characterized by high production budgets, 

state of the art visual effects, and famous directors and actors. Examples in this data subset 

include the Star Wars franchise (“Star Wars” (1977), “The Empire Strikes Back” (1980) and 

“Return of the Jedi” (1983), directed/produced by Lucas), the Terminator series (1984, 

1991) directed by Cameron, the Indiana Jones franchise (“Raiders of Lost Ark” (1981), “The 

Last Crusade” (1989), directed by Spielberg), the Alien series, etc. As expected, movies 

within the same series are most strongly associated. Further, “Raiders of the Lost Ark” 

(1981) and “Back to the Future” (1985) form two hub nodes each having 16 connections to 

other movies and their common feature is that they were directed/produced by Spielberg.
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On the other hand, isolated nodes tend to represent “artsier” movies, such as crime films and 

comedies whose popularity relies more on the plot and the cast than on big budgets and 

special effects, many with cult status among their followers. Examples include “Pulp 

Fiction” (1994) (one of the most popular Tarantino movies), “Fargo” (1996) (a 

quintessential Coen brothers movie), “When Harry Met Sally” (1989) and “Princess Bride” 

(1987). These films have no significant connections in the network, either with each other or 

with the commercial movies in the large community. This is likely due to two reasons: (1) 

we restricted the dataset to movies rated by a substantial fraction of the users, so while there 

probably are connections from “Fargo” to other Coen brothers movies, the other ones did 

not appear in this set; and (2) there is a greater heterogeneity of genres in this set than 

among the large group of science-fiction and action films. In other words, liking “When 

Harry Met Sally” (a romantic comedy) does not make one more likely to enjoy “Silence of 

the Lambs” (a thriller/horror movie), whereas liking “Terminator” suggests you are more 

likely to enjoy “The Alien”. A more complete analysis of this dataset is an interesting topic 

for future work and requires a more sophisticated way of dealing with missing data, which is 

not the focus of the current manuscript.

4.2 National education longitudinal survey study

The data for the second example come from the National Educational Longitudinal Study of 

1988 (NELS:88), whose objective was to assess student attitudes towards a number of 

questions about their school, education, and activities. The data used were obtained from the 

study's website http://nces.ed.gov/surveys/nels88/ and correspond to a sample of 12144 

students of eighth-graders. We selected 218 questions with ordinal and/or binary responses 

that focused on diverse issues, including school, work and home experiences, educational 

and occupational aspirations, access to educational resources and other support, as well as 

student background and school characteristics. Ordinal responses were chosen from the 

following options: “OFTEN”, “SOMETIMES”, “RARELY”, and “NEVER”, while binary 

ones corresponded to a ”YES/NO” answer. Figure 5 depicts the histogram of the frequency 

of options in 218 survey questions.

The estimated network of the selected 218 survey questions is shown in Figure 6. It is 

apparent that the estimated network exhibits a strong clustering structure. For example, the 

set of the following nodes “F1S33A”, “F1S33B”, “F1S33C”, “F1S33D”, and “F1S33E” 

forms a cluster, separated from the remaining nodes. These five questions are a part of a 

sequence of similar questions, focusing on vocational coursework. Specifically, the question 

inquires whether “In your most recent or current VOCATIONAL course, how much 

emphasis did/does your teacher place on the following objectives?” and the specific 

objectives are listed in Table 3. It can be seen that questions “F1S33A”–“F1S33E” reflect 

different aspects of knowledge and analytical ability that a student should acquire from a 

vocational course, and therefore it is reasonable that they form a tight cluster. Similar 

clustering patterns can be observed in other parts of the graph, for example, serial “F1S7”, 

serial “F1S8”, serial “F1S12”, serial “F1S25”, etc.

Next, we focus on broad patterns revealed by the model, as depicted in Figure 6. The upper 

right corner captures relationships between serial questions broadly related to coursework 
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(F1S22–F1S25) in various disciplines (mathematics, science, English, computer education), 

whereas in the lower left corner there are questions related to overall attitude and study 

patterns regarding mathematics and science classes (F1S26–F1S32). It is interesting to 

observe that the model does not discover any relationships between these two question 

clusters. In the center of the plot we find questions related to various life aspects and being 

successful/accomplishing them (F1S46) which is negatively associated with a cluster of 

questions related to working hard in school for good grades (F1S11). In the center, we also 

find a cluster of serial questions related to different ways of interacting with friends (F1S44) 

which is negatively correlated to questions related to students awards (F1S8). In the upper 

left corner we see the serial cluster on grades performance (F1S39) which is also negatively 

correlated with some of the questions related to amount of coursework in various subjects 

(F1S22 and F1S24). Finally, in the bottom right corner we encounter questions related to 

school attendance and attitude towards it (F1S10, F1S12).

Overall, the model reveals interesting and informative patterns, much more so than its 

Gaussian counterpart shown in Figure 7.

Next, we examined pairs of questions exhibiting the largest positive partial correlations 

(based on the theory of Gaussian graphical models, the partial correlation of variables j and j

′ is defined as ). The results are shown in Table 4. Among the top 

five ones, four pairs correspond to serial questions. The only exception is pair “F1S44D—

F1S43”, although it inquires about extra reading, outside school. Analogously, Table 5 lists 

the pair of questions exhibiting the strongest negative partial correlations. Note that question 

pairs “F1S8F—F1S8A”, “F1S15B—F1S15A”, “F1S16B—F1S16D” are composed of two 

opposite questions. It is interesting to observe that the model identifies the pair `F1S10B—

F1S12B”, which can be interpreted that although students may skip class often they do not 

feel good about their action. A similar negative partial correlation is present in pair “F1S10A

—F1S12A” that addresses a “coming to school late” issue. Overall, the proposed model 

identifies strong clustering patterns in the questions being asked in this survey, which 

primarily correspond to series of related in intent and purpose questions, thus indirectly 

validating its usefulness.

5 Summary and Discussion

Ordinal data occur often in practice and are usually treated as continuous for most analyses, 

including estimating dependencies between the variables under consideration by fitting a 

graphical model. Our proposed model, explicitly takes into account the ordinal nature of the 

data in the graphical modeling step. While direct computation for the proposed model is 

expensive, the approximations employed allow us to efficiently fit high-dimensional models. 

On those datasets that the model can be fitted directly, our numerical results show that the 

approximations we make result in a minimal loss of accuracy. We leave the theoretical 

properties of both the exact estimator and its approximate version as a topic for future work.

The method proposed in this paper can also be extended to fit the multivariate ordinal 

regression model, where multiple ordinal responses are fitted on a number of covariates. 

Specifically, suppose Wj1, …, Wjmj are the covariates associated with the jth response. 
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Following the notation in Section 2.1, let Xj denote the jth response, which is an ordinal 

variable, and Zj the corresponding latent continuous variable. We may assume Zj = αj0 + 

αj1Wj1 + … + αjmjWjmj + ∊j, where αj0 is the intercept, and αj1, …, αjmj are regression 

coefficients. In addition, we assume that ∊1, …, ∊p jointly follow a Gaussian distribution 

with mean zero and covariance matrix Σ = Ω−1. To estimate the regression coefficients, we 

may modify the M-step in Section 2.2 to estimate Ω and αjℓ's simultaneously. Rothman et al. 

(2010) discussed a similar problem as the modified M-step, and the algorithm there can be 

directly applied.
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Figure 1. 
Comparison of Frobenius loss and Entropy loss over different values of the tuning 

parameter. The direct computation, the MCMC sampling and the approximation algorithm 

are respectively represented by blue dotted, red dashed and black solid lines.
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Figure 2. 
Illustration of the networks used in four simulated examples: scale-free graph, hub graph, 

nearest-neighbor graph and block graph.
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Figure 3. 
The ROC curves estimated by the probit graphical model (solid dark line), the oracle method 

(dotted blue line) and the naive method (dashed red line). The oracle method and the naive 

method simply apply the graphical lasso algorithm to the latent continuous data Z and the 

observed discrete data X, respectively.
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Figure 4. 
The network estimated by the probit graphical model. The nodes represent the movies 

labeled by their titles. The area of a node is proportional to its degree and the width of a link 

is proportional to the magnitude of the corresponding partial correlations.
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Figure 5. 
Histogram of the number of options in 218 survey questions.

Guo et al. Page 21

J Comput Graph Stat. Author manuscript; available in PMC 2016 March 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. 
Layout of the network estimated by the proposed probit graphical model. The nodes 

represent the survey questions labeled by their code. The area of a node is proportional to its 

degree and the width of a link is proportional to the magnitude of the corresponding partial 

correlations. The red lines represent positive associations, while the light green lines 

negative ones.
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Figure 7. 
Layout of the estimated network by the graphical lasso algorithm. The nodes represent the 

survey questions labeled by their code. The area of a node is proportional to its degree and 

the width of a link is proportional to the magnitude of the corresponding partial correlations. 

The red lines represent positive associations, while the light green lines negative ones.
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Table 1

The numbers are the mean CPU times for different tuning parameter values and 20 replications, with median 

absolute deviations in parentheses (in second). Direct: direct computation. Gibbs sampler: the regular Gibbs 

sampler; TMG: the Gibbs sampler proposed by Pakman and Paninski (2012) via the R package "tmg"; 

Proposed Approximation: the approximation approach proposed in our manuscript

Method CPU time in seconds

Direct 3310.21 (199.95)

Gibbs sampler 46.17 (1.51)

TMG 303.94 (11.05)

Proposed Approximation 0.04 (0.03)
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Table 2

The Frobenius loss and the entropy loss estimated by the probit graphical model, the oracle method and the 

naive method. The oracle method and the naive method simply apply the graphical lasso algorithm to the 

latent continuous data Z and the observed discrete data X, respectively. The results are averaged over 50 

repetitions and the corresponding standard deviations are recorded in the parentheses.

Example n
Frobenius Loss Entropy Loss

Gaussian Oracle Probit Gaussian Oracle Probit

Scale-free

50 2.3 (0.12) 0.7 (0.05) 2.2 (0.13) 12.0 (0.73) 3.1 (0.29) 23.1 (1.83)

100 2.2 (0.13) 0.4 (0.08) 1.7 (0.09) 9.4 (0.68) 1.9 (0.29) 10.1 (0.45)

200 1.7 (0.12) 0.3 (0.02) 1.2 (0.04) 6.4 (0.33) 1.1 (0.10) 5.4 (0.26)

500 0.9 (0.05) 0.1 (0.01) 0.7 (0.04) 3.3 (0.19) 0.5 (0.05) 2.7 (0.19)

Hub

50 1.2 (0.06) 0.3 (0.02) 1.1 (0.04) 21.2 (1.32) 5.8 (0.70) 29.4 (1.76)

100 1.1 (0.10) 0.1 (0.01) 0.8 (0.03) 15.9 (1.03) 3.2 (0.27) 15.1 (0.64)

200 0.8 (0.05) 0.1 (0.01) 0.6 (0.01) 11.9 (0.39) 1.8 (0.23) 10.4 (0.33)

500 0.6 (0.02) 0.0 (0.00) 0.5 (0.01) 9.1 (0.16) 0.7 (0.06) 7.5 (0.16)

Nearest-neighbor

50 1.4 (0.04) 0.6 (0.02) 1.3 (0.06) 16.5 (0.80) 5.6 (0.30) 25.6 (2.04)

100 1.3 (0.08) 0.4 (0.02) 1.0 (0.02) 12.1 (0.52) 3.5 (0.36) 12.4 (0.76)

200 1.0 (0.04) 0.2 (0.01) 0.7 (0.03) 8.6 (0.32) 2.0 (0.11) 7.5 (0.17)

500 0.6 (0.03) 0.1 (0.01) 0.5 (0.02) 5.5 (0.12) 0.8 (0.02) 4.5 (0.19)

Random-block

50 1.8 (0.05) 0.7 (0.05) 1.7 (0.04) 14.8 (1.04) 4.7 (0.46) 23.5 (1.76)

100 1.6 (0.16) 0.4 (0.02) 1.3 (0.03) 10.7 (1.10) 2.9 (0.27) 11.3 (0.46)

200 1.3 (0.05) 0.2 (0.03) 0.9 (0.05) 7.2 (0.19) 1.6 (0.11) 6.3 (0.32)

500 0.7 (0.03) 0.1 (0.01) 0.6 (0.03) 4.1 (0.15) 0.7 (0.06) 3.5 (0.13)
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Table 3

Objectives in survey questions “In your most recent or current vocational course, how much emphasis did/

does your teacher place on the following objectives?”.

F1S33A Teaching you skills you can use immediately

F1S33B Teaching you facts, rules, and steps

F1S33C Helping you understand how scientific ideas and mathematics are used in work

F1S33D Thinking about what a problem means and the ways it might be solved

F1S33E Helping you to understand mathematical and scientific ideas by helping you to manipulate physical objects (tools, machines, lab 
equipment)
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Table 4

List of pairs of questions with strongest positive partial correlations.

Connection Partial Correlation Description

F1S44D—F1S43 0.617981 F1S44D: How often do you spend time on reading for pleasure?

F1S43: How much additional reading do you do each week on your own outside of school - not 
in connection with schoolwork?

F1S45A—F1S45B 0.443995 F1S45A: During the school year, how many hours a day do you on weekdays?

F1S45B: During the school year, how many hours a day do you on weekends?

F1S36E1—F1S36E2 0.416786 F1S36E1: How much time do you spend on History homework in school each week?

F1S36E2: How much time do you spend on History homework out of school each week?

F1S44E—F1S44F 0.398257 F1S44E: How often do you spend time on going to the park, gym, beach, or pool outside of 
school?

F1S44F: How often do you spend time on playing ball or other sports with friends outside of 
school?

F1S12D—F1S12E 0.388861 F1S12D: How often do you feel it is “OK” for you to cheat on tests?

F1S12E: How often do you feel it is “OK” for you to copy someone else's homework?
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Table 5

The list of pairs of questions with strongest negative partial correlations.

Connection Partial Correlation Description

F1S8F—F1S8A −0.376025 F1S8F: Did you win any special recognition for good grades or honor roll?

F1S8A: Haven't you won any awards or received recognition?

F1S10B—F1S12B −0.281428 F1S10B: How many times did you cut or skipped classes?

F1S12B: How often do you feel it is “OK” for you to cut a couple of classes?

F1S15B—F1S15A −0.259550 F1S15B: If does anyone from school called my home on your last absence from school.

F1S15A: The school did not do anything on your last absence from school.

F1S10A—F1S12A −0.216677 F1S10A: How many times were you late for school in the first half of the current school year?

F1S12A: How often do you feel it is “OK” for you to be late for school?

F1S16B—F1S16D −0.214770 F1S16B: When you came back to school after your last absence, other students helped you catch 
up on the work you missed.

F1S16D: When you came back to school after your last absence, you didn't need to catch up on 
work.
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