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SUMMARY
In many high-dimensional microarray classification problems, an important task is to identify subsets
of genes that best discriminate the classes. Nevertheless, existing gene selection methods for microarrag
classification cannot identify which classes are discriminable by these selected genes. In this paper, Weé
propose an improved linear discriminant analysis (LDA) method that simultaneously selects important
genes and identifies the discriminable classes. Specifically, a pairwise fusion penalty for LDA was used &
to shrink the differences of the class centroids in pairs for each variable and fuse the centroids of indis- 2
criminable classes altogether. The numerical results in analyzing 2 gene expression profiles demonstrate
the proposed approach help improve the interpretation of important genes in microarray classification t.
problems. 8
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1. INTRODUCTION
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It has been considered important to predict the clinical class of a sample based on its gene expression pro
files from microarray experiments. However, this is a challenging task due to the huge number of genes.
Linear discriminant analysis (LDA), originally introduced Bjsher(1936), is a classification technique
which has been successfully applied in microarray classification problBish{raniand others2002;

Guo and others 2007; Tai and Pan2007;Wang and Zhu2007, and the references therein). LDA as-
sumes that the observations in each class come from a specific Gaussian-distributed component, and i
also assumes that these Gaussian components have different means but equal covariance matrices. In
prediction procedure, the label of a new observation is determined by the Bayes rule @ddsbihers

2001). LDA performs well for low-dimensional data. In particular, it has some nice properties, such as
the robustness to deviations from model assumptions and the almost-“Bayes” optitGabtyr(d others

2007). Nevertheless, the performance of LDA is far from optimal in high-dimensional cases, especially
when the number of the variables is much larger than the samplesize ) (Di Pillo, 1976,1977).

There are 2 major limitations here. First, the sample covariance matrix is singular and cannot be inverted g
when p > n. To address this problenkriedman(1977) proposed a method to regularize the common
covariance matrix of the Gaussian components in LDA. Second, it is a common assumption that only a
small proportion of variables contribute to classification in high-dimensional data. Nevertheless, it is chal-
lenging to identify such important variables in practi€dashiraniand otherg2002) proposed a modified
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LDA, namely shrunken centroids estimator. By assuming the diagonal shape of the covariance matrix, it
shrinks the class centroids toward the global centroid by using soft thresholding and thus removes unim-
portant variables (i.e. the centroids of all classes are shrunken together) from the Wiadgland Zhu
(2007) reformulated the shrunken centroids estimator as a Lasso-type prdbleshiranj 1996) and
proposed 2 new penalties to improve the effectiveness of variable selékdiand Par{2007) improves
the shrunken centroids estimator by incorporating group structures among the vafaldesd others
(2007) extended the idea of shrunken centroids estimator to LDA with general covariance matrix.

In existing variable selection methods for multiclass LDAbghiraniand others 2002; Wang and
Zhu,2007), the important variables are those effectively discriminate at least 2 out of all classes. In many 2
real problems, however, people are also interested in identifying which specific classes can be discrimi-
nated by an important variable. Imagining, for example, a disease with 3 subtypes (denoted as types |, I,
and IIl). By observing the gene expression profiles, we may see that some genes can discriminate typesg
I and Il but cannot discriminate types Il and lll; on the other hand, some other genes can discriminate
types Il and Il but cannot discriminate types | and Il. Such scenarios often appear in high-dimensional
gene expression profiles, and thus it is necessary to identify these class-specific information. For this aim,
the paper proposes a penalized LDA method that simultaneously selects important variables and identi- 5
fies specific classes that can be discriminated by these variables. Specifically, a pairwise fusion penalty &
was used in the proposed model to fuse the class centroids for each variable. Two classes are considere
indiscriminable if their class centroids are fused together. Moreover, if all class centroids associated with &
a variable are fused, this variable is regarded as unimportant to all classes and removed from the model.

The remainder of the paper is organized as follows: Se@iatroduces the methodology of proposed
method and discusses algorithmic issues. Sedibiustrates the performance of the proposed method
with 2 simulated examples, and Sectidrapplies this method to 2 microarray data sets, respectively.
Finally, some concluding remarks are drawn in Secton
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2. METHODOLOGY
2.1 High-dimensional DA

Suppose the data matriX = (Xi j)nxp consistsof n observations ang variables. Without loss of
generality, we assumx is centered along each column, that Js;' ; Xij =0,1<j<plIna
K-class LDA problem, the observations in tkih class (1< k < K) are assumed to be i.i.d. generated
from a Gaussian distribution with mean, = (uk 1, ..., #k,p) andthe common covariance matrix.
In addition, itis a common assumption in high-dimensional settings that the covariance matrix is diagonal,
thatis,X = diag(a2 02, e, US). This assumption significantly reduces the number of parameters to be
estimated and its advantages are theoretically justifieBitkel and Leving2004).

The parameters of high-dimensional LDA can be estimated by solving the following criterion:

mln ZZZ[(X" 1,i)° IOgajz}, (2.1)

k=1lieS j=1

wherepy = (uq, .. .,yK)T and & is the index set of théth class. Letty = nk/n be the estimate

of the prior of thekth class, whose sample sizerig. The prediction procedure is based on the Bayes

rule (Hastieand others,2001). Specifically, given the estimaf@, £) from (2.1), a new observation
= (X, ..., Xp) isassigned to the class which achieves
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arg, max i (X"; . ), (2.2)

X

where¢ is the density function op-variate Gaussian distribution.
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2.2 The pairwise fusion penalty

To fuse indiscriminable classes for each important variable, we use the following pairwise fusion penalty
to regularize criterion (2.1):

ZZZZ[(XIJ pk,)? —logo }HZ > wddluk —mejl.  (2.3)

k=lieS j=1 i=11<k<k'<K

where is a tuning parameter. The penalty aims at shrinking the differences between every pair of class
centroids for each variable. Similar to the scenario in La$gushiranj 1996), thef1-normin the penalty
shrinks some differences to be exactly zero, resulting in some class cenifgjds having identical
values. If ik j = uw,j, for some 1< k < k' < K, then variablej cannot discriminate clads and
classk’, though it may be effective to discriminate other classes. Moreover, if all class centroids for some
variable are fused together, thatig,; = 72j = --- = up,j, then this variable is considered unimportant

to the classification task and can be removed from the model. We borrow the ide@dro(R006) and
define the adaptive welghtfzk = |ik,j — i, J| <k <K <K, 1< j < p,wherefiyj isthe
estimate ofuk j from criterion .1). With these adaptlve weights, the pa|rW|se fusion penalty tends to
lightly fuse classek andk’ (1 < k < k' < K) if variable j is effective to discriminate them and heavily
fuses them otherwise. Note that the pairwise fusion penalty has been apgliadé&md otherg2010) for
clustering purpose.

REMARK 2.1 It is of interest to compare the method defined }3j with the £1-regularized high-
dimensional LDA as follows:

p K
m|n ZZZ[(X"_M’) |Ogoj2i|+iZka,j|,uk,j|, (2.4)

k=lieS j=1 j=1k=1

wheref j's are adaptive weights definedi@g = 1/|ik,j|. Thel1-penaltyin (2.4) shrinks the individual
uk,j’s toward zero (which is the global centroid of the entire centered data) and removes vafiaiohe
the model if allzzy j, 1 < k < K, are set to zeros. However, it cannot correctly identify which specific
classes are discriminable by each important variable. FolloWiiagg and Zhy2007), we can show that
(2.4) is actually equivalent to the shrunken centroids estimator (Tibsharahiothers 2002) if we set
&.j = ~/1I/nk — 1/n instead For clarification, we denote the estimators defined by criteri@r®) @nd
(2.4) as LDA-PF and LDA-L1, respectively.

2.3 Parameter estimation

Notice that criterion Z.3) can be decomposed inpindividual minimization problems, where thgh
one is

X i — .
m|n _ZZ |:( | ] /ukl) Iogo_lz:| +i Z wlﬁflz’l'uk’J _luk/,j|9 (25)

R sy 1<k<k' <K

where uj) is the jth column of x. By taking the first derivative of objective function (2.3) with re-
spect tar¥'s, we can obtain the closed-form solut@fi=1/n > {1 3 .q (% — fik.j), wherejix j =

1/nk X icg Xi.j- The estimation of ukj’s is nontrivial. When ajz’s are replaced by their
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estimatespbjective function 2.3) can be transformed into a quadratic programming problem. We pro-
pose an efficient iterative algorithm based on the standard local quadratic approximation algeaithm (

and Li, 2001), which has been used in a number of variable selection procedures and whose convergenc

properties have been studied IBgn and Li(2001) andHunter and Li(2005). Specifically, Ie‘ﬁﬁ)j bethe
estimates from th&h iteration ¢ = 1, 2, .. .), we approximate

(Iu(t+l) (t+_1))2 1
(t+1) (t+1) ~) _ ~O
[ i | ~ — — + _|/1kj — My [, (2.6)
2| (t) :ul((t/) | 2
whichresults in an approximation t@ 5):
(% — , (j) (k. j —#k/j)z 2.7)
”()ZA(t)ZZZ L~ )+ Z Wy 2A(t) A(t) :
D 20") Cies 1<K<k <K i — |

Denote) as thejth of X andX as am x K matrix whosekth (1 < k < K) column is composed of ones
for those components i andzeros for those outsidgf. Let = H(j)- We also denot& = (gk k )k xK
asaK x K matrix whose off-diagonal elemegg v = —w|(<]|)<//|ﬁ|(<t)1 —ﬁl((t,) | andwhose diagonal element

Okk = Zlgk/gK;k,# wﬁj&,/lﬁg)] — ﬁi((t,) |. Then the following proposition shows th&.7) has a closed-

form solution.

PrRoPOSITION 2.2 Objective function (2.7) is equivalent to the following generalized ridge regression
problem:
min|ly - XBI% + 1o? BTGB (2.8)

with a closed-form solution R
B=XTX+i076)H(XTY). (2.9)

This procedure was repeated ovet 1,2, ... until convergence. We list the proposed algorithm as
follows:

Step 1 Initializeﬁ,((lf = ﬂ|(<1} =1/M>eg X 1SKkSK I<j<p
Step 2 In thetth iteration, updatgt(t“) 1<k<K,1<j < p,with (2.9);
Step 3 Repeat Step 2 until some stoppmg criterion achieves.

REMARK 2.3 In this work, the stopping criterion is defined 28,k > 1<j<p |ﬁ|((tT1) A(t) i/

Sickek Zici<p Ik J| <10

REMARK 2.4 For numerical stability, we threshold the absolute valuﬁﬁb‘[ ﬁl((t/)- ata lower bound of

10710, and at the end of the iterations, set all estimates less thalf 1@zero.

3. SMULATION STUDY

To evaluate the performance of the proposed method, we modified the simulated exantlesaimd
others(2010).

e
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In this section, we evaluate the performance of LDA-PF on 2 simulated examples. In each example,
we generate 50 data sets, each consisting of a training set, an independent validation set, and an inde-
pendent test set, with 20, 20, and 2000 observations, respectively. The model is estimated on the trainingU
set, and the tuning parameter is selected on the validation set by minimizing the corresponding predic- g
tion error rate. We repeat this procedure on 50 data sets for each simulation and recorded the test errog
rates, the false-negative rates (the proportions of incorrectly removed important variables), and the false-&
positive rates (the proportions of incorrectly selected unimportant variables), averaged on the 50 data sets=
respectively.

ExaMPLE 3.1 In this scenario, there ate = 4 classes ang = 202 variables with the first 2 being
important and the remaining ones unimportant. The variables were generated as follows: the first
variable follows distribution®N (2.5,1), N(0, 1), N(0, 1), andN(—2.5,1) in the 4 classes, respec-
tively; the second variable follows distributiods(1.5,1), N(1.5,1), N(—=1.5,1), andN(—1.5,1)
in the 4 classes, respectively. All remaining 200 variables are Ni(@, 1) for all 4 classes. In this
simulation setting, variable 1 cannot discriminate classes 2 and 3, while variable 2 cannot discrimi-
nate classes 1 and 2 (as well as classes 3 and 4).

ExamPLE 3.2 This example considers a 5-class scenario. There are a tqat 03 variables with
the first 3 important and the other 200 unimportant. Similarly to simulation 1, the important variables
follow normal distributions with unit variances but different means in the 5 classes. Specifically, the
means of variable 1 are 2.5, 2.5, 0,-1.5, the means of variable 2 are2.5, 0, 0, 0, 2.5, and the
means of variable 3 is 2.5, 0, 82.5,—2.5. In this scenario, variable 1 cannot discriminate classes
1 and 2, as well as classes 3 and 4; variable 2 cannot discriminate classes 2, 3, and 4; and variable
cannot discriminate classes 2 and 3, as well as classes 4 and 5.

The results over 50 replications for both examples are summarized in Talle can see that in
both examples, LDA-PF exhibit similar performance to LDA-L1 in terms of false-negative rate and false-
positive rate. and it achieves slightly lower error.

Table2 summarizes the results of identifying indiscriminable classes for those important variables.
Specifically, each row in the table gives the average proportion of the important variables that correctly
identify the corresponding indiscriminable pair of classes. For example, the first row shows that for LDA-
PF, on average 96.0% of the 50 replications, variable 1 can correctly fuse classes 2 and 3. It is also clear®
that LDA-PF dominates LDA-L1 in terms of correctly fusing the indiscriminable classes. It should also &
be pointed out that although LDA-L1 correctly fuses some class centroids, respectively (e.g. in the first &
row), these results are artifacts. For example, in Example 3.1, the centroids of classes 2 and 3 for variablex
1 are all equal to zero, which happens to be the value that;tipenaltyshrinks to. The same reasoning
also applies to classes 2, 3, and 4 for variable 2 in Example 3.2.
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Table 1. Prediction and variable selection results for Exampse$and 3.2. Each table cell exhibits the

result averaged oveB0 repetitions and the associated standard deviation (in the parentheses). “ER” is

the average prediction error rate on the test set, “FN” is the average false-negative rate, that is, the

average proportion of incorrectly removed important variables, and “FP’ is the false-positive rate, that
is, the average proportion of incorrectly selected unimportartables

£T0Z ‘SZ Yole |\ Uo A1SIRAIUN pleAse

Example Method ER (%) FN (%) FRY%o)

1 LDA-L1 15.6 (1.3) 0(0) 0.2 (0.4)
LDA-PF 15.1 (1.4) 0(0) 0.2 (0.5)

2 LDA-L1 13.4 (1.1) 0 (0) 0.5(0.8)

LDA-PF 12.9 (1.2) 0(0) 0.51.3)
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Table 2. Pairwise class fusion results for Examp&4-3.2. “Pair” corresponds to indiscriminable class
pairs for the variables in the corresponding row. For example, the first row indicates that variable 1 is
unimportant for discriminating class@sand3. The numbers in the following columns give the proportions

of the important variables that correctly identify the corresponding indiscriminable pair of classes. All
results are averaged ové0 repetitions with the corresponding standard deviations in theptreses

Example Variable Pair LDA-L1 (%) LDA-PH%)
1 1 2/3 96.0 (19.8) 96.0 (19.8)
2 1/2 0 (0) 96.0 (19.8)
3/4 4.0 (19.8) 92.0 (27.4)
2 1 1/2 6.0 (24.0) 96.0 (19.8)
3/4 42.0 (49.9) 94.0 (24.0)
2 2/3 100 (0) 100 (0)
2/4 98.0 (14.1) 98.0 (14.1)
3/4 98.0 (14.1) 98.0 (14.1)
3 2/3 44.0 (50.1) 90.0 (30.3)
4/5 0 (0) 90.0(30.3)

In this section, we apply LDA-PF to 2 microarray data sets: SRBCT and PALL, whose descriptions are

listed below:

e SRBCT data set: This data set contains the expression profiles of 2308 genes, obtained from 83 tis-
sue samples of small round blue cell tumors (SRBCT) of childhood cakt@m(@and others2001).
The 83 samples are classified into 4 tumor subtypes: Ewing’s sarcoma, rhabdomyosarcoma (RMS),

4. REAL DATA ANALYSIS

neuroblastoma, and Burkitt's lymphoma.

e PALL data set: This data set contains gene expression profiles for 12 625 genes from 248 patients
(samples) with pediatric acute lymphoblastic leukemia (PALL) (¢e@h and others2002, for more
details). The samples are classified into 6 tumor subtypes: T-ALL (43 cases), E2A-PBX1 (27 cases),
TEL-AML (79 cases), Hyperdiploid- 50 (64 cases), BCR-ABL (15 cases), and MLL (20 cases). The
original data had a large number of missing intensities and the following preprocessing was applied.
All intensity values less than one were set to one; then all intensities were transformed to log-scale.
Further, all genes with log-intensities equal to zero for more than 80% of the samples were discarded,

thus leaving 12 083 genes for further consideration.

In each data set, all observations were randomly split into 2 groups: a training set (70% of all ob-
servations) and a test set (30% of all observations). LDA-PF was estimated on the training set and its
performance was evaluated on the test set. Note that both test error rate and number of selected gene
depend on the choice of the tuning parametdrigurel illustrates the test error rate with respect to the
number of selected genes when varyingver different values. In both data sets, we can see that the low-

AsAuN prenrH ‘ABojooz dwo) wnssn | 8yl Jo Ariqi 1Ae N suig e /610°Sfeudnolploxo'sonsieisolq//:dny woiy papeojumoq

Z Yo N@o

est test error rate is achieved when number of selected genes varies in a large range. The optimal tuningj
parameter was selected on the training set by 5-fold cross-validation. Since there may be multiple tuning g
parameters corresponding to the same error rate, we choose the largest one among theSrshtaise

the test error rates for both LDA-L1 and LDA-PF. We can see that both methods produce the same error

rate in SRBCT and PALL data sets.

LDA-PF selected 8 and 124 genes in SRBCT and PALL data sets, respectively. Rigamds il-
lustrate the centroids of the selected genes estimated by LDA-PF in these 2 data sets using heatmaps.


http://biostatistics.oxfordjournals.org/

Simultaneous variable selection and class fusion 605

0.7 T T T T 0.7 T T T T T T
0.6 g 086} 9
05F 4 0.5 b
a -]
E 04 BOA{ .
2 2
o ®
E 0.3 E 0.3 ‘
|
I
021 ! 0.2 ‘lL b
|
|
A
0.1 1 01F q
Y g
I / - =
0 200 400 600 800 1000 1200 1400 1600 1800 4] 200 400 600 800 1000 1200 1400 1600 1800 2000
Number of selected genes Number of selected genes

Fig. 1. The curves of the test error rates with respect to the number of selected variables. The figure in the left panel
is about SRBCT data set, and the figure in the right panel is about PALL data set.

Table 3. Classification results for the SRBCT and PALL data sets. “ER” is the prediction error rate on

the testset
Example Method ER%)
SRBCT LDA-L1 0
LDA-PF 0
PALL LDA-L1 4.0
LDA-PF 4.0
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Fig. 2. The heatmap of the estimated centroids for the 8 genes selected by LDA-PF.

In each figure, the columns correspond to classes and rows to genes. The red (green) spots represent
positive (negative) values in estimated centroids. It is easy to read the discriminable/indiscriminable
classes from these heatmaps. For example, gene “71 672" in Figrae discriminate class RMS from


http://biostatistics.oxfordjournals.org/

Downloaded from http://biostati stics.oxfordjournals.org/ at Ernst Mayr Library of the Museum Comp Zoology, Harvard University on March 25, 2013

= - o - K s am = A— = 5" © T = =
e FUITINDY . POV RV, UV . A VETIETOI AOPUUI Iy . FIVE . Ty Py, ATV TP RN U PP N i . PPV Ay ST i
s (0T 1000 00 0 (D s 0 100 o ‘s ; 5 00 06 0 10 00 10,0610 0 (0,0 (6 0 GO 16 B (0, (0,030 aaaaarﬂr_.&auéaasﬁ EECRG_C LGE 60N oe
IO OO NG | | TN I O IO Y N 0 DY A D P = D N N = N NSO
“UBZSHR/_ 957?5.3 . . jjéauﬁ:afﬂrggig.gﬁ‘ gnfguw]%ﬁz_ﬁrﬁaﬂzﬁouxn

=z

Hyperdiploid>=50

E2A-PBX1

(N
D_.
<
o
—
>
o]
°
(O]
5
(8]
<@
[0}
(%]
[%]
(O]
c
(0]
(@]
<
N
—
(0]
z
2
S
(@]
5
[}
o
o
=
C
[0}
(8]
©
(0]
|5
©
£
£
(%3]
()
(O]
=
2
s
o
o
©
E
©
(0]
z
(O]
K
T
(3]
=
L

BCR-ABL



http://biostatistics.oxfordjournals.org/

Simultaneousariable selection and class fusion 607

the remaining classes; gene “1727” in Figudecan discriminate class “T-ALL" from the remaining
classes.

5. CONCLUSIONS

1} pOpeO|UMOQ

We have developed a penalized LDA method for simultaneously selecting important genes and identify
the corresponding discriminable classes from expression profiles and it help improve the interpretation for §
the functions of particular genes in different classes. The pairwise fusion penalty introduced here can also§
be applied to other classification techniques such as quadratic discriminant analysis, logistic regression=
and (linear) support vector machines. '
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