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ABSTRACT

This paper studies the use of profile alignment and sup-
port vector machines for subcellular localization. In the
training phase, the profiles of all protein sequences in the
training set are constructed by PSI-BLAST and the pairwise
profile-alignment scores are used to form feature vectors for
training a support vector machine (SVM) classifier. During
testing, the profile of a query protein sequence is computed
and aligned with all the profiles constructed during training
to obtain a feature vector for classification by the SVM clas-
sifier. Tests on Reinhardt and Hubbard’s eukaryotic protein
dataset show that the total accuracy can reach 99.4%, which
is significantly higher than those obtained by methods based
on sequence alignments and amino acid composition. It was
also found that the proposed method can still achieves a pre-
diction accuracy of 96% even if none of the sequence pairs
in the dataset contains more than 5% identity. This paper
also demonstrates that the performance of the SVM is pro-
portional to the degree of its kernel matrix meeting the Mer-
cer’s condition.

1. INTRODUCTION

In protein classification, it has been found that substantial
improvement in prediction accuracy can be achieved by con-
verting variable-length sequences into to fixed-length fea-
ture vectors via preprocessing techniques. In most cases,
the preprocessing is embedded in a kernel function to facil-
itate subsequent classification by support vector machines
(SVMs). For example, in SVM-Fisher [1], a hidden Markov
model (HMM) is trained from examples of a protein fam-
ily. Then, given an unknown protein sequence, the deriv-
ative of the log-likelihood score for the protein sequence
with respect to each of the HMM parameters is computed.
The composition of these derivatives (Fisher scores) form
a fixed-length vector, which is to be classified by an RBF-
SVM. In SVM-Pairwise [2], each training sequence is com-
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pared with all other training sequences to form a list of
pairwise alignment scores. These scores are then packed
to form a feature vector. This process is repeated for every
training sequence in the training set. In the mismatch ker-
nel proposed by Leslie et al. [3], a set of subsequences of
length k, namely k-mers, is defined. A query sequence is
compared with the k-mers to count the number of times the
k-mers appear in the sequence. The concatenation of the
counts corresponding to all k-mers forms a feature vector
in the k-mer feature space. Subsequent to the pioneering
work of [1-3], the advantage of constructing kernel func-
tions from sequences have been further demonstrated and
improved by a number of investigators [4, 5].

While the preceding sequence-based methods perform
reasonably well in protein homology detection, they may
not be able to capture sufficient information from the se-
quences to detect remote homology. To overcome this diffi-
culty, profile-based methods have been actively investigated
in recent years [6—8]. A profile is a matrix in which el-
ements in a column specify the frequency of each amino
acid appears in that sequence position. Given a sequence,
a profile can be derived by aligning it with a set of simi-
lar sequences. The similarity score between a known and
an unknown sequence can be computed by aligning the un-
known sequence with the profile of the known sequence [6]
or by aligning the profile of the known sequence with that
of the unknown sequence [7]. In the latter case, because the
comparison involves not only two sequences but also their
closely related sequences, the score is more sensitive to de-
tecting weak similarity between protein families.

The focus of this paper is placed upon subcellular local-
ization. The subcellular location is a key functional charac-
teristic of potential gene products such as proteins. Because
experimental subcellular localization is time-consuming and
cannot be performed on a genome-wide scale, an accurate,
reliable and efficient system is necessary to automate the
prediction process. Kernel techniques based on sequence
alignment mentioned earlier have been proven to be power-
ful for this task, as demonstrated by for example Kim [5].

This paper applies the pairwise profile alignment SVM,



which has been used successfully in detecting remote ho-
mologous proteins, to predict eukaryotic protein subcellu-
lar locations. Instead of extracting feature vectors directly
from sequences, this method trains an SVM classifier by
using scores of local pairwise profile alignment. Specif-
ically, the profiles of all protein sequences are generated
by PSI-BLAST [9] and the profiles of the testing proteins
are aligned with the profiles of the proteins in the train-
ing set. Different SVM kernels are then created from these
alignment scores for classification. Our experimental results
demonstrate the advantage of embedding pairwise profile
alignment scores into SVM kernels for eukaryotic protein
subcellular localization. We also did experiments to demon-
strate that meeting the Mercer’s condition is an important
step in designing the SVM kernels.

2. SEQUENCE VERSUS PROFILE ALIGNMENT

2.1. Local Pairwise Sequence Alignment

Pairwise sequence alignment has been widely used to com-
pute the similarity between two DNA or two protein se-
quences. It finds the best match between two sequences
by inserting some gaps into proper positions of the two se-
quences. One of the most successful local pairwise sequence
alignment algorithms is the Smith-Waterman algorithm [15].
Denote

D={sW .. s sG  sTh

as a training set containing 7’ sequences. Here, the ¢-th pro-
tein sequence is denoted as

SO =90 ¢ 89, 1<i<T
where S, ,ii) € A, which is the set of 20 amino acid symbols,
and n; is the length of S®. Using the BLOSUMS62 sub-
stitution matrix [10], a set of similarity scores &’ (Sff)7 ngj ))
between position u of S and position v of S) can be ob-
tained. Then, based on these scores and the Smith-Waterman
alignment algorithm [15], a sequence alignment score
0/ (8@ 86)) can be obtained, which easily leads to a nor-
malized alignment score:

p/(s(i)7 S(j))
Vi (8@ S@)p (S, SW))

To facilitate SVM classification, we define four SVM
kernels based on Eq. 1:

¢'(s9,80)) = ¢

K/(S® 8Dy — ¢/(8®) 50) 2)

Ky(8® s0y = (g/(s<i>7s<ﬂ‘>)+1>d 3
Ki(89, 8Dy = (SO, 54)¢'(sV), 5%) @
KJ(S®, S0 <C/(5<i>75*)c/(5<j>75*)+1>d(5)
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where d governs the degree of nonlinearity and S is a pseudo-
sequence that can be approximated by a real sequence S
(1 <1< T)as follows:

_ O OO0
! arglglta%XTC(S A)E S, B

Note that these kernels only map the variable-length se-
quences to scores. To produce a better kernel for SVM clas-
sification, we can convert a variable-length sequence S?)
into a fixed-length feature vector
O = [(S9,5D) .. (59, SO

by aligning S’ (9 with each of the sequences in the training
set. A kernel inner product between S and S¢) can then
be naturally obtained as (¢'9, ¢’V). This leads to a class
of algorithms referred to as SVM-pairwise adopted by [2,5].
Mathematically, the corresponding kernel is defined as

T
K! S(Z) S(J) Zc/ S S(t) (S(j)“g(t))7 (6)
t=1

for 1 < 4,7 < T. Kemel K[ has two advantages over K/
to K. First, every element in K} is the combined result
of all pairwise comparisons, whereas in K] to K}, every
entry represents the pairwise comparison of two sequences
only. Second, K can be written as the dot product of two
functions, i.e., K4(S® D) =< ¢'@ ¢'D » whereas
such dot product may not exist in K’ and K. Therefore,
K is guaranteed to be a valid kernel.

The sensitivity of detecting subtle local homogenous seg-
ments can be improved by replacing pairwise sequence align-
ment with pairwise profile alignment. In the next section,
we will use the similarity scores of local pairwise profile
alignment to generate kernel matrices for SVM classifica-
tion.

2.2. Local Pairwise Profile Alignment

Following [16], here we use a protein sequence (called query
sequence) as a seed to search and align homogenous se-
quences from the SWISSPROT 46.0 [17] protein database
using the PSI-BLAST program [9] with parameters h and
j set to 0.001 and 3, respectively. These aligned sequences
share some homogenous segments and belong to the same
protein family. The aligned sequences are further converted
into two profiles to express their homogenous information:
position-specific scoring matrix (PSSM) and position-specific
frequency matrix (PSFM). Both PSSM and PSFM are ma-
trices with 20 rows and L columns, where L is the total
number of amino acids in the query sequence. Each col-
umn of a PSSM represents the log-likelihood of the residue
substitutions at the corresponding positions in the query se-
quence [9]. The (i, 7)-th entry of the matrix represents the



chance of the amino acid in the j-th position of the query
sequence being mutated to amino acid type ¢ during the evo-
lution process. The PSFM contains the weighted observa-
tion frequencies of each position of the aligned sequences.
Specifically, the (2, 7)-th entry of PSFM represents the pos-
sibility of having amino acid type ¢ in position 7 of the query
sequence.
Denote the PSSM of S and the PSFM of S0 as

PO = [p{ p{, ... p
Q" = [a,qf,....q)

respectively, where

p = PO, BT, 1< <,
ad? = 49,49, ..., 1<s<n;

We adopt the scoring function introduced by [7] to compute
the similarity score between pgf ), qq(Jj ), ij ), and qu ):
20
(9,8 = (b +6940) . @
h=1
In recent years, the Smith-Waterman algorithm has been
extended to compute the similarity between two profiles [7].
In this paper, we further apply the Smith-Waterman algo-
rithm [15] and its affine gap extension [18] to obtain the
profile alignment score p(S(, SU)) (see the supplementary
webpage [20] for details). The local pairwise profile align-
ment score is then normalized as follows:

p(s(i)7 S(j))
V(8@ 8@ p(SH), SY

The normalization allows us to compare the alignment scores

$(8®,80)) = (8)

arising from profile matrices with different numbers of columns.

Let us further define five kernels based on the normal-
ized scores (Eq. 8) for training SVM classifiers:

Ky (8D,80) = ¢(8@ s ©)
K,(8®, 80y — (C(S“%S”))H)d (10)
(s, 87¢(s9, 87 an

( )
[(3(5(1‘)7 S(j)) —
( )

; : , : d
Ky(89,59) = (¢(s9,8¢(s9, 8% +1) 12)

iy
Ks(SD,80) = 37 ¢(5D, 5@)¢(s9), 50 (13)
=1
where S™* is a pseudo-sequence that can be approximated by
the profile of a real sequence SU (1 < [ < T') as follows:

_ OO OR 0,
! arglrgngC(S ST)C(SY, S,

In this work, the degree d in Eqgs. 3, 5, 10, and 12 were
optimized empirically. Specifically, for K/ and K, d was
set to 1, and for K, and K, d was set to 20 and 10, respec-
tively.
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3. MULTI-CLASSIFICATION USING SVM

The multi-class problem can be solved by the one-vs-rest
approach. Specifically, for a C-class problem (here C' = 4)
C independent SVM classifiers are constructed. The c¢-th
SVM is trained from positively labelled samples of the c-
th class and negatively labelled samples of all other classes.
During classification, given an unknown protein sequence
S, the output of the ¢-th SVM is computed as:

JA8) =Y eioeiK(S,5D) b, (14)

where K (S, S(®) is one of the kernels defined by Egs. 2 to
6 or Egs. 9 to 13, S, is a set composed of the indexes of
the support vectors, y,; € {—1,+1} is the label of the i-th
sample, and o ; is the i-th Lagrange multiplier of the c-th
SVM. Finally, the class of S is determined by a MAXNET:

y(9) = argmax f,(S), c¢=1,...,C

where y(S) is the predicted class of .S. In the following, we
refer y(S) with kernel K5 to as pairwise profile alignment
SVM (or simply PairProSVM), and y(S) with kernel K to
as pairwise sequence alignment SVM (PairSeqSVM). See
the supplementary web page [20] for the structure of the
prediction system. The Spider SVM toolbox [21] was used
to implement the SVM classifiers.

4. EXPERIMENTS AND RESULTS

4.1. Dataset

Reinhardt and Hubbard’s eukaryotic protein dataset [11] was
employed to test the performance of our method. This dataset
has been used extensively for evaluating subcellular local-
ization methods in the literature [11-14]. The sequences
in this database were extracted from SWISSPORT 33.0 and
the subcellular location of every protein has been annotated.
The sequences were filtered, i.e., only those appeared to be
complete and having reliable annotations were kept. Trans-
membrane proteins were excluded because reliable meth-
ods for predicting these proteins have been well developed.
Plant sequences were also removed to ensure sufficient dif-
ference in composition. The resulting dataset comprises
2427 eukaryotic proteins (684 cytoplasm, 325 extracellular,
321 mitochondrial, and 1097 nuclear proteins).

4.2. Assessment of the Prediction Results

We used 5-fold cross validation to evaluate the performance,
i.e., the original dataset was randomly divided into 5 sub-
sets. Fach subset was singled out in turn as a testing set,
and the remaining ones were merged as the training set. The
process was iterated 5 times until every subset has been used



for testing. The prediction results from all iterations were
averaged. The overall prediction accuracy (OA), the accu-
racy for each subcellular location (Acc), and the Matthew’s
correlation coefficient (MCC) [19] were used to assess the
prediction result. MCC allows us to overcome the short-
coming of accuracy (Acc) on unbalanced data.

Denote M € RE*Y as the confusion matrix of the pre-
diction result, where C' is the number of classes. Then M, ;
(1 < i,5 < C) represents the number of proteins that actu-
ally belong to class ¢ but are predicted as class j. Denote

C C
Pec = Mc,w qc — E E Mi7j7
i=1,i#cj=1,j#c
C
Te = § Mi,w
i=1,itc

&
se= Y. M., (15)
J=1,4c

where ¢ (1 < ¢ < C) is the index of a particular class. For
class ¢, p. is the number of true positives, ¢, is the num-
ber of true negatives, r. is the number of false positives,
and s, is the number of false negatives. Based on the nota-
tions above, the overall accuracy (OA), the accuracy of class
¢ (Acc,.), the Matthew’s Correlation Coefficient of class ¢
(MCC,), the overall MCC (OMCC) and the weighted aver-
age MCC (WAMCC) are defined respectively as:

C
MC c c,C
OA = —026110 : Acc, = 70M’ (16)
Zi:l =1 Mi,j Zj:l Mc,j
MCCC — Pclc — TcSe (17)
V(e + sc)(pe +76) (ge + 80)(ge +7c)
OMCC = ——— fs‘jfff S (18)
VB+8HB+A)G+3)(G+7)
C Ly
WAMCC = 3 %MCCC (19)

c=1

e} N C A
where ]X =>4 (pe +gc), P=> 1P d =
F=3Y o qrcand§=73% ", s..

C
Zc:l de»

4.3. Results on Reinhardt & Hubbard’s dataset

The prediction results of PairProSVM and PairSeqSVM are
listed in Table 1. Also listed are the results of other three
existing methods (NNPSL [11], SubLoc [12], and ESLpred
[14]) for comparison. The overall accuracy of PairProSVM
achieves 99.4%, which compares favorably with NNPSL
(66%), SubLoc (79.4%), ESLpred (88%), and PairSeqSVM
(87.9%). This suggests that profile alignment extracts more
information on subcellular location than sequence alignment
and amino acid composition. The prediction performance
on mitochondria is particularly interesting because they are
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usually difficult to be accurately predicted by existing meth-
ods. The prediction accuracy of PairProSVM on mitochon-
dria reaches 98.4%, which compares favorably with NNPSL
(61%), SubLoc (56.7%), and ESLpred (68.2%). The MCC
of PairProSVM on mitochondria reaches 0.98, which rep-
resents 69% and 42% relative improvement with respect to
SubLoc and ESLpred, respectively.

Table 1 shows that PairSeqSVM performs better than

NNPSL and SubLoc but poorer than ESLpred and PairProSVM.

Note that ESLpred combines different protein features—
including amino acid composition, physico-chemical prop-
erties, dipeptide compositions, and PSI-BLAST decisions—
for subcellular localization. The inferiority of PairSeqSVM
as compared to ESLpred suggests that the fusion of differ-
ent protein features has advantages. Therefore, using a di-
versity of protein features in PairSeqSVM and PairProSVM
may further improve the prediction performance.

4.4. Results on Redundance-Removed Datasets

Note that Reinhardt and Hubbard’s dataset includes some
protein sequences with high homologous (identity > 80%).
Therefore, it is worthwhile to investigate whether the good
performance of PairProSVM is due to the similarity in the
sequences. To answer this question, we constructed a series
of redundance-removed datasets by eliminating the most
similar sequences. Specifically, any pairs of sequences in
a redundance-removed dataset should not have an identity
higher than A, where A is a predefined threshold. The
blastclust program in the NCBI BLAST software was em-
ployed to implement the filtering process.” Different A,
from 5% to 100% with intervals of 5%, were tested. Note
that when A = 100%, no proteins were removed, which
means that Reinhardt and Hubbard’s dataset was used.

Figure 2(a) shows the number of samples in the redun-
dance-removed datasets with different \. We did a 5-fold
cross validation on the reduced datasets and the prediction
results are shown in Figure 2(b), which clearly shows that
PairProSVM is less sensitive to the similarity among the
training sequences than the PairSeqSVM.

4.5. Comparison on Alignment Kernels

The performance of the profile alignment kernels (K to
K5) were are shown in Table 2. Evidently, the performance
of the five profile alignment kernels vary significantly. To
reveal the cause of this performance variation, we calcu-
lated the percentage of negative eigenvalues (the ratio of the
number of negative eigenvalues to the number of all eigen-
values) for each kernel matrix and listed the results in the
bottom of Table 2. The results show that the lower the per-

IWe wused the command “blastclust-L O -S lambda”, where
lambda = 5,10, ...,100.



Table 1. Comparison of different prediction methods for Reinhardt and Hubbard’s eukaryotic protein dataset. NNPSL [11]
and SubLoc [12] use amino acid composition as features; ESLpred [14] is a mixture method combining amino acid com-
position, dipeptide composition, physico-chemical properties, and BLAST decisions; PairSeqSVM uses pairwise sequence
alignment to create SVM kernels [2]; PairProSVM is the method introduced in this paper. The results of SublLoc were
obtained by leave-one-out cross validation. The results of NNPSL were obtained by 10-fold cross validation, and those
of ESLpred, PairSeqSVM, and PairProSVM were obtained by 5-fold cross validation. Acc: accuracy; MCC: Matthew’s

correlation coefficient.

Subcellular NNPSL SubLoc ESLpred PairSeqSVM (K[)  PairProSVM (K5x)
Location Acc(%) Acc(%) MCC  Acc(%) MCC  Acc(%) MCC  Ace(%) MCC
Cytoplasm 55 76.9 0.64 852 0.79 85.5 0.79 99.9 1.00
Extracellular 75 80.0 0.78 88.9 0.91 84.6 0.89 98.5 0.98
Mitochrondria 61 56.7 0.58 68.2 0.69 66.7 0.71 98.4 0.98
Nuclear 72 87.4 0.75 95.3 0.87 96.8 0.87 99.7 1.00
Overall 66 79.4 - $8.0 - $8.0 0.84 99.4 0.99
Weighted Average - - 0.70 - 0.83 - 0.83 - 0.99
centage of negative eigenvalues the higher the overall accu- ROG irves for Cytoplasi ROG curves for Extracellular
racy. For example, K and K3 have as many as 8.5% and 100 e 2 X X 100 Nl Yati
6.2% negative eigenvalues, which result in very poor perfor- < @
mance. Among the five pairwise profile alignment kernels z z
(K to K5), only K5 satisfies the Mercer’s condition and g g
consequently it achieves the best performance.

We also found that none the eigenvalues of the five se-

quence alignment kernel matrices is less than 0, which means

that all these kernels satisfy the Mercer’s condition and con-
sequently their performance are almost identical (ranging
from 87% to 88%).

The ROC curves in Figure 1 show the prediction per-
formance of these kernels under various decision thresh-
olds. Because the five sequence alignment kernels have
similar performance, only the ROC curve of K[ was plot-
ted. All profile alignment kernels (except K5) do not sat-
isfy the Mercer’s condition and consequently perform worse
than the sequence alignment kernels. Among the kernels
that satisfy the Mercer’s condition, K5 performs the best.
This demonstrates that profile alignment kernels can extract
more useful information than sequence alignment kernels
provided that they meet the Mercer’s condition.

In sum, the comparison of accuracy, MCC and ROC
curves demonstrates the importance of Mercer’s condition,
and a lower percentage of negative eigenvalues of a kernel
matrix generally results in better prediction performance.

5. CONCLUSIONS

This paper applies profile-to-profile alignment to eukaryotic
protein subcellular localization. Protein alignment profiles
are calculated by searching the SWISSPROT database us-
ing PSI-BLAST. Then the scores of local pairwise profile
alignment are computed, which in turn are used to construct
the kernel of an SVM classifier. We have tested this method
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Fig. 1. ROC curves showing the prediction performance of
K to K5 and K.

on Reinhardt and Hubbard’s eukaryotic protein dataset and
found that the overall accuracy can reach 99.4%, which is
substantially higher than those obtained by existing meth-
ods in the literature. It was also found that the overall ac-
curacy still remains at 95% even if the majority of redun-
dant proteins have been removed from the dataset. We hope
this in-silico method can be complementary to experimen-
tal subcellular localization techniques.
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