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SUMMARY
Variable selection for clustering is an important and challenging problem in high-dimensional data
analysis. Existing variable selection methods for model-based clustering select informative
variables in a “one-in-all-out” manner; that is, a variable is selected if at least one pair of clusters
is separable by this variable and removed if it cannot separate any of the clusters. In many
applications, however, it is of interest to further establish exactly which clusters are separable by
each informative variable. To address this question, we propose a pairwise variable selection
method for high-dimensional model-based clustering. The method is based on a new pairwise
penalty. Results on simulated and real data show that the new method performs better than
alternative approaches which use ℓ1 and ℓ∞ penalties and offers better interpretation.
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1. Introduction
The goal of clustering is to organize data into a small number of homogeneous groups, thus
aiding interpretation. Clustering techniques have been employed in a wide range of
scientific-fields, including biology, physics, chemistry and psychology. These techniques
can broadly be classified into two categories: hierarchical methods and partition methods
(see Gordon (2008), Kaufman and Rousseeuw (1990), and references therein). The former
typically start from a dissimilarity matrix that captures differences between the objects to be
clustered and produce a family of cluster solutions, whose main property is that any two
clusters in the family are either disjoint or one is a superset of the other. Various popular
agglomerative algorithms, such as single, complete and average linkage belong to this class.
Partition algorithms produce non-overlapping clusters, whose defining characteristic is that
distances between objects belonging to the same cluster are in some sense smaller than
distances between objects in different clusters. The popular K-means algorithm (MacQueen,
1967) and its variants are members of this class. A statistically motivated partition method is
model-based clustering, which models the data as a sample from a Gaussian mixture
distribution, with each component corresponding to a cluster (McLachlan and Basford,
1988). A number of extensions addressing various aspects of this approach have recently
appeared in the literature. For example, Banfield and Raftery (1993) generalized model-
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based clustering to the non-Gaussian case, while Fraley (1993) extended it to incorporate
hierarchical clustering techniques.

The issue of variable selection in clustering, also known as subspace clustering, has started
receiving increased attention in the literature recently (for a review of some early algorithms
see Parsons et al. (2004)). For example, Friedman and Meulman (2004) proposed a
hierarchical clustering method which uncovers cluster structure on separate subsets of
variables; Tadesse et al. (2005) formulated the clustering problem in Bayesian terms and
developed an MCMC sampler that searches for models comprised of different clusters and
subsets of variables; Hoff (2006) also employed a Bayesian formulation based on a Polya
urn model; and Raftery and Dean (2006) introduced a method to sequentially compare two
nested models to determine whether a subset of variables should be included or excluded
from the current model. Some recent approaches addressing variable selection are based on
a regularization framework. Specifically, Pan and Shen (2006) proposed to maximize the
Gaussian mixture likelihood while imposing an ℓ1 penalty on the cluster means. In addition,
the means of all clusters were required to sum up to zero for each variable. This method
removes variables for which all cluster means are shrunk to zero and hence regarded as
uninformative. Wang and Zhu (2007) treated the cluster mean parameters associated with
the same variable as a natural “group” and proposed an adaptive ℓ∞ penalty and an adaptive
hierarchical penalty to make use of the available group information. Finally, Jornsten and
Keles (2008) introduced mixture models that lead to sparse cluster representations in
complex multifactor experiments.

All the existing variable selection methods for model-based clustering choose informative
variables in a “one-in-all-out” manner; that is, a variable is selected if it is informative for at
least one pair of clusters and removed only if it is non-informative for all clusters. However,
in many practical situations, one may be interested in identifying which variables are
discriminative for which specific pairs of clusters. A toy example illustration of such a
scenario is shown in Figure 1. There are three clusters present in this two-dimensional data
set; the first variable discriminates between clusters 2 and 3, while the second variable
discriminates between clusters 1 and 2. We believe that such situations arise often in high-
dimensional data, for example, in data obtained from high-throughput expression
technologies.

To address this problem, this paper proposes a pairwise variable selection method for high-
dimensional model-based clustering. Specifically, a pairwise fusion penalty is introduced to
penalize the difference between (all) pairs of cluster centers for each variable and shrink the
centroids of non-separable clusters to some identical value. If all cluster centroids associated
with a variable are “fused,” this variable is regarded as non-informative and removed from
the model. Otherwise, the pairwise fusion penalty has the exibility of only fusing the
centroids of non-separable clusters for this variable.

The remainder of the paper is organized as follows: Section 2 introduces the pairwise fusion
penalty, and Section 3 discusses algorithmic issues. The performance of the proposed
clustering technique on synthetic and real data is demonstrated in Sections 4 and 5,
respectively. Finally, some concluding remarks are drawn in Section 6.

2. Problem Formulation and Pairwise Fusion
Suppose n samples have been collected on p variables and organized in a data matrix X =
(xi,j)n×p. Without loss of generality we can assume that the data are centered for each

variable, i.e., , for all 1 ≤ j ≤ p. In model-based clustering, a K-cluster problem is
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described by a K-component Gaussian mixture model. Specifically, the observations xi =
(xi,1, … , xi,p) are assumed to be independent and generated from the density

(1)

where ϕ (xi; μk, ∑k) denotes the Gaussian density function with mean vector μk = (μk,1, … ,
μk,p) and covariance matrix ∑k,

(2)

The “weights” wk’s (wk ≥ 0 for all 1 ≤ k ≤ K and ) are the mixing coefficients,
capturing the contribution of the k-th cluster. We also introduce the following notation: the
mean parameters μk,j’s can be collected in a K × p matrix, with rows corresponding to
clusters and columns to variables,

We use μk = (μk,1, … , μk,p) to represent the mean parameters for the k-th cluster (k-th row
vector of μ), and μ(j) = (μ1,j, … , μK,j)T to represent the mean parameters for the j-th variable
(j-th column vector of μ).

The log-likelihood of the data matrix X is then given by,

(3)

where  is the parameter set of interest. The log-likelihood (3) can be
maximized using an expectation-maximization (EM) algorithm, which in the E-step imputes
the cluster membership of the samples and in the M-step estimates the mixing coefficients,
the mean parameters and the covariance matrices. The number of clusters K can be selected
using, for example, a Bayesian information criterion (BIC) or another similar criterion.
Given the estimate Θ̂, an observation  is assigned to the cluster which
achieves

(4)

2.1 The Pairwise Fusion Penalty
Since our focus here is on variables defined as informative in terms of differences in the
cluster means, we make a further simplifying assumption that the covariance matrices are
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the same for all clusters and are diagonal, i.e.,  for all 1 ≤ k ≤
K. An alternative would be to impose a shrinkage penalty on the covariance matrices as well
as the means, as in Xie et al. (2008), and consider a variable non-informative for a pair of
clusters only if it has both the same mean and the same covariance structure in both clusters.
This does not seem to be important for the applications we have in mind, such as gene
selection in expression data clustering, since the main effects are normally contained in the
means. Moreover, this is a common assumption in high-dimensional settings, since it
significantly reduces the number of parameters to be estimated. There is also theoretical
justification for estimating the covariance matrix by a diagonal matrix for discriminant
analysis in high dimensions (Bickel and Levina, 2004). In addition, imposing an additional
penalty on the variances results in a dramatic increase in computational cost, and, in our
experience, very small empirical gains.

Given our focus on pairwise variable selection, we propose maximizing the following
criterion for estimating the parameters of the Gaussian mixture model:

(5)

where λ is a tuning parameter. We refer to  as the pairwise fusion
penalty (PFP). The aim of the penalty is to shrink the difference between every pair of
cluster centers for each variable j. Due to the singularity of the absolute value function, some
differences are shrunken to exactly zero, resulting in some cluster means μ̂k,j’s having
identical values. Notice that we are not shrinking the means to zero, only towards each
other; zero has no special meaning here and the data do not need to be centered. If μ̂k,j =
μ ̂k′ ,j , then variable j is considered to be “non-informative” for separating cluster k and
cluster k′ , though it may be informative for separating other clusters. Moreover, if all cluster
means for a variable are shrunken to the same value, that variable is considered non-
informative for clustering purposes and can be removed from the model.

2.2 The Adaptive Pairwise Fusion Penalty
To further improve on (5), we apply the popular adaptive penalization (Zou, 2006) by
considering

(6)

where  are pre-specified weights. We call this version adaptive pairwise fusion penalty
(APFP). The intuition is that if variable j is informative for separating clusters k and k′ , we

would like the corresponding  to be small; thus, the difference between μk,j and μk′,j is
lightly penalized. On the other hand, for a non-informative variable j for clusters k and k′ ,

we would like the corresponding  to be large and hence the difference between μk,j and
μk′ ,j is heavily penalized. In our implementation, we compute the weights from the
unpenalized estimates as
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where μ̃k,j is the estimate of μk,j without any penalization (λ = 0).

It is interesting to compare our approach to the ℓ1-regularized method proposed by Pan and
Shen (2006) and the ℓ∞-regularized method proposed by Wang and Zhu (2007). Note that
Pan and Shen (2006) proposed an ℓ1 penalty without adaptive weights, but for a fair
comparison here we use adaptive versions of all the methods. Pan and Shen (2006) proposed
to use the criterion,

(7)

where  ’s are adaptive weights defined as  for all 1 ≤ k ≤ K and 1 ≤ j ≤ p.
Here μ̃k,j is the estimate from model-based clustering method without penalty. Notice that
the data are required to be centered, and the ℓ1 penalty shrinks the individual μk,j’s towards
zero (the global mean) and removes variable j from the model if all μ̂k,j for 1 ≤ k ≤ K are set
to zero. However, it cannot identify variables that are non-informative for separating
particular subsets of clusters, especially when the common mean of these clusters is
different from zero. On the other hand, the ℓ∞-regularized criterion proposed by Wang and
Zhu (2007) is

(8)

where the adaptive weight . Unlike the ℓ1 penalty
which shrinks each μk,j individually, the ℓ∞ norm penalizes the maximum magnitude of the
cluster means for each variable. If the largest cluster mean for variable j is shrunk to zero,
then all other means for the j-th variable are automatically zero, and the variable can be
eliminated from the model. However, this penalty is also unable to identify specific clusters
that can be separated by a particular variable.

2.3 Model Selection
There are two parameters to be selected, the number of clusters K and the tuning parameter
λ. We select them using a BIC-type criterion, defined by

(9)

where  are estimated with K clusters and the tuning parameter λ. The degrees
of freedom d are defined as the number of distinct nonzero estimates. Specifically, d = K − 1
+ p + e(μ̂), where e(μ̂) is the number of distinct nonzero elements in {μ̂k,j}. This definition is
similar to the degrees of freedom for fused Lasso (Tibshirani et al., 2005).
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3. The Optimization Algorithm
The optimization of the objective function (6) is non-trivial. As in classical model-based
clustering, we employ an EM algorithm to maximize the log-likelihood function subject to
the penalty constraint. Let Δi,k be the indicator of whether xi is from cluster k, that is, Δi,k =
1 if xi belongs to cluster k, and Δi,k = 0 otherwise. If the missing data Δi,k were observed, the
penalized log-likelihood function for the complete data is given by

(10)

Our algorithm follows closely the EM algorithm for the standard (unpenalized) Gaussian
mixture model (McLachlan and Peel, 2002); the main difference is in estimating μk,j in the
M-step. The EM algorithm iterates between two alternating steps and produces a sequence
of estimates Θ̂(t), t = 0, 1, 2, … We start with the E-step given the current parameter
estimates Θ̂(t).

E-step
In this step, we impute values for the unobserved Δi,k by

(11)

Plugging them into (10), we obtain the so-called penalized Q-function:

M-step
The goal is to update the parameter estimates via

(12)

Specifically,

(13)

(14)

and
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(15)

The optimization of (15) is nontrivial and is discussed in detail next.

Estimation of the cluster means
In general, objective function (15) can be transformed into a quadratic programming
problem, and solved by a commercially available package. This approach, however, can be
iniefficient in practice, especially for a large number of variables p. Thus, we propose a
more efficient iterative algorithm based on the standard local quadratic approximation (Fan
and Li, 2001). Local quadratic approximation has been used in a number of variable
selection procedures and its convergence properties have been studied by Fan and Li (2001)
and Hunter and Li (2005). Specifically, we approximate

(16)

where s is the iteration index (different from t, which is used to denote different iterations of
the EM algorithm, whereas s is used to denote iterations of the local quadratic
approximation within the M-step), and μ̂(s) are the estimates from the previous iteration.
This approximation converts the minimization in (15) into a generalized ridge (quadratic)
problem, which can be solved in closed form. For example, for each j (notice that (15) can
be decomposed into p separate minimization problems), we solve (iteratively over s)

(17)

For numerical stability, we threshold the absolute value of  at a lower bound of
10−10, and at the end of the iterations, set all estimates equal to 10−10 to zero.

We note that the M-step of maximizing the penalized Q-function does not have closed form
solutions, and its maximizer is obtained iteratively. Therefore, strictly speaking, our
algorithm is an expectation-conditional maximization (ECM) algorithm (Meng and Rubin,
1993), which replaces the M-step of EM by a sequence of conditional maximization steps,
each maximizing the penalized Q-function over Θ, but with some of its elements fixed at
their previous values. By Theorem 3 in Meng and Rubin (1993), our algorithm is guaranteed
to converge to a stationary point.

4. Numerical Results
In this section, we illustrate the performance of the proposed pairwise variable selection
method on three synthetic examples with four clusters for Simulations 1 and 3 and five
clusters for Simulation 2. We compare four methods: Gaussian mixture model-based
clustering without a penalty, the adaptive ℓ1 penalty (7), the adaptive ℓ∞ (8) and our
proposed adaptive pairwise fusion penalty (6). We refer to them as “GMM”, “AL1”, “ALP”
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and “APFP” respectively. The non-adaptive PFP method was also applied and is generally
dominated by APFP; its results are omitted for space considerations. In Simulations 1 and 2,
the same number of observations, i.e., 20, are generated from each cluster, while in
Simulation 3, we generate different number of observations for different clusters. The
number of clusters K and the tuning parameter λ are selected using the BIC criterion, as
described in Section 2.3. For benchmarking purposes, we also calculate the solution by
specifying the true number of clusters, namely K = 4 for Simulations 1 and 3 and K = 5 for
Simulation 2, and only select λ using BIC. We repeat this 50 times for each simulation and
record the average clustering error rates as compared to the true cluster labels, and average
selection rate for both informative and non-informative variables. To compute the clustering
error rates, the predicted class labels are calculated by a majority vote, i.e., if most data
points in a particular predicted cluster belong to a true cluster k (1 ≤ k ≤ K), then all data
points in this predicted cluster are labeled as k.

The performance of the EM algorithm in model-based clustering depends on the choice of
the initial values for the parameters since the likelihood function is not convex, and the
algorithm can only converge to a local maximum. To get a good starting value, we first fit
100 GMMs (without penalty) with different random initial values, and use the estimate with
the highest likelihood as a starting value for the EM algorithm. In our simulations, the EM
algorithm usually converged after about 100 iterations.

Simulation 1
In this scenario, there are four clusters and p = 220, with the first 20 being informative and
the remaining ones non-informative. The variables were generated according to the
following mechanism: the first 20 are independently distributed N (μk,j , σ2) for cluster k,
whereas the remaining 200 variables are all i.i.d. N(0, 1) for all four clusters. Table 1 gives
the means for the first 20 variables. For example, in cluster 1, variables 1–10 all have the
same mean value 2.5, and variables 11–20 all have the same mean value 1.5. Figure 2 (left
panel) illustrates the distribution of the informative variables. Notice that variables 1–10 are
non-informative for separating clusters 2 and 3, while variables 11–20 are non-informative
for separating clusters 1 and 2 (as well as clusters 3 and 4). We consider two values of the
common variance, σ2 = 1 and σ2 = 4. The former creates a high “signal-to-noise ratio
(SNR)” scenario, while the latter simulates a situation where the “signal-to-noise ratio” is
low.

Simulation 2
A five cluster scenario is considered. There are a total of p = 230 variables with the first 30
informative and the other 200 non-informative. Similarly to Simulation 1, the informative
variables are independently distributed as N (μk,j , σ2) for cluster k, whereas the remaining
200 variables are all i.i.d. N (0, 1) for all five clusters. Table 1 gives the mean values for the
informative variables, and Figure 2 (right panel) illustrates the distribution of the
informative variables. Notice that variables 1–10 are non-informative for separating clusters
1 and 2, as well as clusters 3 and 4; variables 11–20 are non-informative for separating
clusters 2, 3 and 4; and variables 21–30 are non-informative for separating clusters 2 and 3,
as well as clusters 4 and 5. We, again, consider σ2 = 1 (high signal-to-noise ratio) and σ2 = 4
(low signal-to-noise ratio).

Simulation 3
This simulation is designed to test the proposed method on unbalanced data, i.e., data where
clusters have different sample sizes. All the settings in this simulation are the same as in
Simulation 1 (high SNR), except that the sample size for clusters 3 and 4 has been increased

Guo et al. Page 8

Biometrics. Author manuscript; available in PMC 2010 September 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



to 200. Therefore, there are two small clusters (1 and 2) with 20 observations each and two
large clusters (3 and 4) with 200 observations each.

The results over 50 replications for all simulation scenarios are summarized in Table 2.
When the signal-to-noise ratio in Simulations 1 and 2 is high, all four methods select the
correct number of clusters and the error rates are very close to zero. On the other hand, in
the low signal-to-noise ratio setting, GMM and ALP completely fail to select the correct
number of clusters, and have a high error rate. The performance of the AL1 and APFP
methods also degrade, but both are still able to select the correct number of clusters most of
the time. Further, the error rate of the APFP method is comparable with that of the AL1
method. In terms of variable selection, AL1, ALP and APFP are able to identify the
informative variables, but APFP is more effective than ALP and AL1 at removing non-
informative variables. The results for Simulation 3 are very similar to those of Simulation 1
with high SNR, which shows that unbalanced data do not affect performance of any of the
methods.

If a variable is non-informative for separating a pair of clusters, and the corresponding
estimated means are also the same, we consider this correct “fusion”. Table 3 summarizes
these results. Specifically, each row in the table gives the proportion of correctly fused
variables (average over 50 replications) out of the ten that are non-informative for separating
the corresponding pair of clusters (indicated in the third column). For example, the first row
shows that for the APFP method, on average 91.6% of the variables among the first ten are
correctly fused for clusters 2 and 3. It is also clear that APFP dominates both AL1 and ALP
in terms of correctly fusing the cluster means. Although AL1 and ALP can correctly fuse
some cluster means (e.g., in the first and second row), these results are artifacts. For
example, in Simulation 1, the means of clusters 2 and 3 for variables 1–10 are all equal to
zero, which happens to be the value that the ℓ1 penalty shrinks to. The same reasoning
applies to clusters 2, 3 and 4 for variables 11–20 in Simulation 2. On the other hand, in
Simulation 1, although clusters 1 and 2 (as well as clusters 3 and 4) have the same mean
value for variables 11–20, the AL1 method fails to fuse them, since their mean value is
different from zero. The ALP method only shrinks the cluster mean with the largest
magnitude, such as the means of clusters 1 and 2 and cluster 3 and 4 for variables 11–20 in
Simulation 1. We can also see that both AL1 and ALP are unable to perform pairwise
variable selection for unbalanced clusters in Simulation 3. In contrast to Simulation 1, the
overall sample mean in Simulation 3 (red star in Figure 3) does not lie at the centroid of the
four cluster means. This explains why AL1 fails to identify non-separable clusters 2 and 3
for variables 11–20 and ALP fails to identify non-separable clusters 3 and 4, which they
were able to identify in Simulation 1. The APFP method identifies the correct structure in all
these scenarios.

5. Applications to Gene Expression Data
In this section, we apply the pairwise fusion method to two gene microarray data sets. To
illustrate the method, we pre-select a subset of genes from each data by ranking the genes
according to their variance and only using the top 100 and bottom 100 genes. We anticipate
that high variance genes are more informative than low variance genes for clustering
purposes, although, as the results below show, this is not always true. Notice that selection
does not use any class label information. The obtained 200 variables (genes) are centered
before clustering.

5.1 The SRBCT Data
This data set contains the expression profiles of 2308 genes, obtained from 83 tissue samples
of small round blue cell tumors (SRBCT) of childhood cancer (Khan et al., 2001). The 83
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samples are classified into four tumor subtypes: Ewing’s sarcoma (EWS),
rhabdomyosarcoma (RMS), neuroblastoma (NB), and Burkitt’s lymphoma (BL).

The results in Table 4 (SRBCT) show that all these methods select six clusters via BIC and
produce the same error rate of 1.4%. Table 5 shows the confusion matrix for the APFP
method. Each row corresponds to a tumor subtype, and each column to an identified cluster.
It can be seen that subtype EWS is split into clusters 2 and 6, and subtype RMS into clusters
1 and 3. This result suggests possible existence of heterogeneous structures within these two
subtypes.

From Table 4, we can also see that both GMM and ALP select all 200 genes, while APFP
selects 92 from the top 100 genes and 66 from the bottom 100 genes, and AL1 selects all top
100 genes and 88 from the bottom 100 genes. This is a somewhat unexpected result. To
further investigate this issue, two F-statistics and their p-values were computed for each
gene; the first one compares the four tumor subtypes, while the second one the six identified
clusters. The results are shown in Figure 4. Notice that although genes with a large variance
tend to be informative (since they tend to have small p-values as shown in the left panels of
Figure 4), genes with a small variance are not necessarily non-informative for clustering.
The right panels in Figure 4 show that among the bottom 100 genes by variance there is a
number of genes with relatively small p-values, both for discriminating the true subtypes
and the found clusters. These turn out to be the genes that are selected by the APFP method
from the bottom 100 genes. Further, the left panels in Figure 4 show that some of top 100
genes have large p-values. Indeed, the four genes that have the largest p-values are not
selected by APFP. Overall, Figure 4 provides insight into why 66 genes are selected by the
APFP method from the bottom 100 group, and why some of the genes in the top 100 group
are not selected. The selection of all the genes by the L1 method is obviously not
satisfactory.

Figure 5 shows the results for pairwise fusion. The rows correspond to the 92 (out of top
100) genes selected by the APFP method and the column to pairs of clusters. There are a
total of 15 pairs formed from the six identified clusters. A black (white) spot indicates that
the estimated means of the corresponding gene for the two clusters are different (the same).
For example, the gene with ID “435953” is non-informative for separating clusters 1 and 3,
as well as clusters 2 and 5, and clusters 4 and 6. It can be seen that most genes are
informative for only a subset of clusters. Compared to the “one-in-all-out” approach, this
result is more informative for describing the functions of a gene with respect to
discriminating different tumor subtypes.

5.2 PALL Data Set
This data set contains gene expression profiles for 12,625 genes from 248 patients (samples)
with pediatric acute lymphoblastic leukemia (PALL), see Yeoh et al. (2002) for more
details. The samples are classified into six tumor subtypes: T-ALL (43 cases), E2A-PBX1
(27 cases), TEL-AML (79 cases), hyperdiploid>50 (64 cases), BCR-ABL (15 cases) and
MLL (20 cases). The original data had a large number of missing intensities and the
following pre-processing was applied. All intensity values less than one were set to one;
then all intensities were transformed to log-scale. Further, all genes with log-intensities
equal to zero for more than 80% of the samples were discarded, thus leaving 12,083 genes
for further consideration. From the pre-processed data, the top and bottom 100 genes were
selected according to the overall variance criterion described above. All variables were
centered.

From Table 4 (PALL), we can see that GMM, AL1 and APFP methods select 12, 7 and 9
clusters, respectively, and produce comparable error rates (25%~27%), all of which are
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significantly lower than that of ALP (41.1%). Table 6 shows the confusion matrix for the
APFP method. Unlike the results on the SRBCT data, the clusters discovered by APFP are
generally not consistent with the six subtypes. However, subtypes E2A-PBX1 and T-ALL
are largely captured by clusters 3 and 7, most samples in subtype hyperdiploid>50 are
assigned to clusters 4 and 6, while TEL-AML is split amongst clusters 1, 2 and 9. This result
suggests the possible presence of a more complex structure in some of the subtypes.

Figure 6 shows the scatter plot of variance vs p-values obtained from the two F-statistics as
described above. Once again, genes with a large variance do not necessarily correspond to
small p-values, and vice versa. Figure 7 provides a detailed illustration of the gene functions
with respect to discriminating different tumor subtypes.

6. Conclusions
We have developed a method for simultaneously clustering high-dimensional data and
selecting informative variables, by employing a penalized model-based clustering
framework. In particular, the proposed method penalizes the difference between the cluster
means for each pair of clusters and for each variable, which allows one to identify and
remove non-informative variables for selected subsets of clusters. This allows to gain more
insight into the function of particular variables and potentially discover heterogeneous
structures that other available methods are unable to capture. Our numerical work suggests
that this penalty proves more effective in removing non-informative variables than an ℓ1
penalty method, and provides better interpretation. Possible extensions include allowing for
different variances and fusing variances as well as the means, as discussed at the start of
Section 2.1, as well as extensions to non-Gaussian data. Applications to problems other than
clustering are another possibility; a similar penalty for simultaneously selecting factors and
collapsing levels in ANOVA was proposed by Bondell and Reich (2009) while this paper
was under review.
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Figure 1.
A toy example. Variable 1 is informative for separating clusters 2 and 3, and variable 2 is
informative for separating clusters 1 and 2.
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Figure 2.
The distribution of informative variables in Simulation 1 (left) and Simulation 2 (right). The
red star indicates the position of the overall sample mean.

Guo et al. Page 14

Biometrics. Author manuscript; available in PMC 2010 September 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3.
Simulation 3. The sample sizes of clusters 1, 2, 3 and 4 are 20, 20, 200, and 200,
respectively. The red star indicates the position of the overall sample mean, and the plot is
shifted to show centered data.
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Figure 4.
Plots of the negative logarithm p-values vs variance for SRBCT data. The left column is the
top 100 genes (largest overall variances), and the right column is the bottom 100 genes. The
upper row is negative logarithm p-values corresponding to an F-statistics comparing four
tumor subtypes, and the lower row is the negative logarithm p-values for the six identified
clusters. Triangles denote the genes that are not selected by the APFP method.
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Figure 5.
Pairwise variable selection results for the APFP method on the SRBCT data with top 100
genes. Each row corresponds to a gene. Each column corresponds to a cluster pair; for
example, “1/2” indicates clusters 1 and 2. A black (white) spot indicates that the estimated
means of the corresponding gene for the two clusters are different (the same). For example,
gene “435953” is non-informative for separating clusters 1 and 3, 2 and 5, and 4 and 6.
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Figure 6.
Plots of the negative logarithm p-values vs variance for PALL data. The left column is the
top 100 genes (largest overall variances), and the right column is the bottom 100 genes. The
upper row is negative logarithm p-values corresponding to an F-statistics comparing four
tumor subtypes, and the lower row is the negative logarithm p-values for the six identified
clusters. Triangles denote the genes that are not selected by the APFP method.
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Figure 7.
Pairwise variable selection results for the APFP method on the PALL data with top 100
genes. Each row corresponds to a gene. Each column corresponds to a cluster pair; for
example, “1/2” indicates clusters 1 and 2. A black (white) spot indicates that the estimated
means of the corresponding gene for the two clusters are different (the same).
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